Skip to content

High performance, non blocking profiler for modern Python web apps. Flask, FastAPI, Sanic, SQLAlchemy, MongoDB and more.

License

Notifications You must be signed in to change notification settings

ankan97dutta/profilis

Repository files navigation

image

Profilis

A high performance, non-blocking profiler for Python web applications.

Docs CI PyPI Downloads

Overview

Profilis provides drop-in observability across APIs, functions, and database queries with minimal performance impact. It's designed to be:

  • Non blocking: Async collection with configurable batching and backpressure handling
  • Framework agnostic: Works with Flask and custom applications (FastAPI/Sanic planned)
  • Database aware: Built-in support for SQLAlchemy (pyodbc/MongoDB/Neo4j planned)
  • Production ready: Configurable sampling, error tracking, and multiple export formats
Screenshot 2025-09-01 at 12 38 50 PM

Star This Repository

If you find Profilis helpful for your projects, please consider giving it a star! It helps others discover this tool and motivates continued development.

GitHub stars

Features

  • Request Profiling: Automatic HTTP request/response timing and status tracking
  • Function Profiling: Decorator-based function timing with exception tracking
  • Database Instrumentation: SQLAlchemy query performance monitoring with row counts
  • Built-in UI: Real-time dashboard for monitoring and debugging
  • Multiple Exporters: JSONL (with rotation), Console
  • Runtime Context: Distributed tracing with trace/span ID management
  • Configurable Sampling: Control data collection volume in production

Installation

Install the core package with optional dependencies for your specific needs:

Option 1: Using pip with extras (Recommended)

# Core package only
pip install profilis

# With Flask support
pip install profilis[flask]

# With database support
pip install profilis[flask,sqlalchemy]

# With all integrations
pip install profilis[all]

Option 2: Using requirements files

# Minimal setup (core only)
pip install -r requirements-minimal.txt

# Flask integration
pip install -r requirements-flask.txt

# SQLAlchemy integration
pip install -r requirements-sqlalchemy.txt

# All integrations
pip install -r requirements-all.txt

Option 3: Manual installation

# Core dependencies
pip install typing_extensions>=4.0

# Flask support
pip install flask[async]>=3.0

# SQLAlchemy support
pip install sqlalchemy>=2.0 aiosqlite greenlet

# Performance optimization
pip install orjson>=3.8

Quick Start

Flask Integration

from flask import Flask
from profilis.flask.adapter import ProfilisFlask
from profilis.exporters.jsonl import JSONLExporter
from profilis.core.async_collector import AsyncCollector

# Setup exporter and collector
exporter = JSONLExporter(dir="./logs", rotate_bytes=1024*1024, rotate_secs=3600)
collector = AsyncCollector(exporter, queue_size=2048, batch_max=128, flush_interval=0.1)

# Create Flask app and integrate Profilis
app = Flask(__name__)
profilis = ProfilisFlask(
    app,
    collector=collector,
    exclude_routes=["/health", "/metrics"],
    sample=1.0  # 100% sampling
)

@app.route('/api/users')
def get_users():
    return {"users": ["alice", "bob"]}

# Start the app
if __name__ == "__main__":
    app.run(debug=True)

Function Profiling

from profilis.decorators.profile import profile_function
from profilis.core.emitter import Emitter
from profilis.exporters.console import ConsoleExporter
from profilis.core.async_collector import AsyncCollector

# Setup profiling
exporter = ConsoleExporter(pretty=True)
collector = AsyncCollector(exporter, queue_size=128, flush_interval=0.2)
emitter = Emitter(collector)

@profile_function(emitter)
def expensive_calculation(n: int) -> int:
    """This function will be automatically profiled."""
    result = sum(i * i for i in range(n))
    return result

@profile_function(emitter)
async def async_operation(data: list) -> list:
    """Async functions are also supported."""
    processed = [item * 2 for item in data]
    return processed

# Use the profiled functions
result = expensive_calculation(1000)

Manual Event Emission

from profilis.core.emitter import Emitter
from profilis.exporters.jsonl import JSONLExporter
from profilis.core.async_collector import AsyncCollector
from profilis.runtime import use_span, span_id

# Setup
exporter = JSONLExporter(dir="./logs")
collector = AsyncCollector(exporter)
emitter = Emitter(collector)

# Create a trace context
with use_span(trace_id=span_id()):
    # Emit custom events
    emitter.emit_req("/api/custom", 200, dur_ns=15000000)  # 15ms
    emitter.emit_fn("custom_function", dur_ns=5000000)      # 5ms
    emitter.emit_db("SELECT * FROM users", dur_ns=8000000, rows=100)

# Close collector to flush remaining events
collector.close()

Built-in Dashboard

from flask import Flask
from profilis.flask.ui import make_ui_blueprint
from profilis.core.stats import StatsStore

app = Flask(__name__)
stats = StatsStore()  # 15-minute rolling window

# Mount the dashboard at /_profilis
ui_bp = make_ui_blueprint(stats, ui_prefix="/_profilis")
app.register_blueprint(ui_bp)

# Visit http://localhost:5000/_profilis to see the dashboard

Advanced Usage

Custom Exporters

from profilis.core.async_collector import AsyncCollector
from profilis.exporters.base import BaseExporter

class CustomExporter(BaseExporter):
    def export(self, events: list[dict]) -> None:
        for event in events:
            # Custom export logic
            print(f"Custom export: {event}")

# Use custom exporter
exporter = CustomExporter()
collector = AsyncCollector(exporter)

Runtime Context Management

from profilis.runtime import use_span, span_id, get_trace_id, get_span_id

# Create distributed trace context
with use_span(trace_id="trace-123", span_id="span-456"):
    current_trace = get_trace_id()  # "trace-123"
    current_span = get_span_id()    # "span-456"

    # Nested spans inherit trace context
    with use_span(span_id="span-789"):
        nested_span = get_span_id()  # "span-789"
        parent_trace = get_trace_id() # "trace-123"

Performance Tuning

from profilis.core.async_collector import AsyncCollector

# High-throughput configuration
collector = AsyncCollector(
    exporter,
    queue_size=8192,        # Large queue for high concurrency
    batch_max=256,          # Larger batches for efficiency
    flush_interval=0.05,    # More frequent flushing
    drop_oldest=True        # Drop events under backpressure
)

# Low-latency configuration
collector = AsyncCollector(
    exporter,
    queue_size=512,         # Smaller queue for lower latency
    batch_max=32,           # Smaller batches for faster processing
    flush_interval=0.01,    # Very frequent flushing
    drop_oldest=False       # Don't drop events
)

Configuration

Environment Variables

# Note: Environment variable support is planned for future releases
# Currently, all configuration is done programmatically

Sampling Strategies

# Random sampling
profilis = ProfilisFlask(app, collector=collector, sample=0.1)  # 10% of requests

# Route-based sampling
profilis = ProfilisFlask(
    app,
    collector=collector,
    exclude_routes=["/health", "/metrics", "/static"],
    sample=1.0
)

Exporters

JSONL Exporter

from profilis.exporters.jsonl import JSONLExporter

# With rotation
exporter = JSONLExporter(
    dir="./logs",
    rotate_bytes=1024*1024,  # 1MB per file
    rotate_secs=3600         # Rotate every hour
)

Console Exporter

from profilis.exporters.console import ConsoleExporter

# Pretty-printed output for development
exporter = ConsoleExporter(pretty=True)

# Compact output for production
exporter = ConsoleExporter(pretty=False)

Performance Characteristics

  • Event Creation: ≤15µs per event
  • Memory Overhead: ~100 bytes per event
  • Throughput: 100K+ events/second on modern hardware
  • Latency: Sub-millisecond collection overhead

Documentation

Full documentation is available at: Profilis Docs

Docs are written in Markdown under docs/ and built with MkDocs Material.

Available Documentation

To preview locally:

pip install mkdocs mkdocs-material mkdocs-mermaid2-plugin
mkdocs serve

Development

Roadmap

See Profilis – v0 Roadmap Project and docs/overview/roadmap.md.

License

MIT

Contact

Feel free to reach out if you have questions, suggestions, or would like to contribute to Profilis!