Skip to content
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
264 changes: 264 additions & 0 deletions examples/low_frequency/magnetic/joule_heating.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,264 @@
# # Busbar Joule Heating Analysis
#
# This example demonstrates how to set up and solve a busbar Joule heating analysis using PyAEDT.
# The analysis captures frequency-dependent phenomena including skin effect, current redistribution,
# and AC losses in power electronics systems.
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Not only in electronic systems, but all bus bar applications.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sure I will update it

#
# 1. Import packages and instantiate the application.
# 2. Create busbar geometry with input/output terminals and assign materials.
# 3. Set up current excitations following Kirchhoff's laws and configure analysis.
# 4. Run eddy current analysis and extract engineering results.
#
# Keywords: **Busbar**, **Joule heating**, **Eddy current**, **Skin effect**

# ## Prerequisites
#
# ### Perform imports

# +
import math
import os
import tempfile
import time

import ansys.aedt.core # Interface to Ansys Electronics Desktop

# -

# ### Define constants
# Constants help ensure consistency and avoid repetition throughout the example.

AEDT_VERSION = os.getenv("AEDT_VERSION", "2025.2")
NUM_CORES = 4
# Run headless in CI environments to avoid UI launch failures
NG_MODE = True

# Geometry parameters (mm)
BUSBAR_L = 100.0
BUSBAR_W = 10.0
BUSBAR_H = 5.0
TAB_L = 5.0
TAB_W = 3.0
TAB_H = 3.0

# Electrical parameters
I1 = 100.0 # Input current 1 (A)
I2 = 100.0 # Input current 2 (A)
FREQ = 50 # Frequency (Hz)

# Gate solver execution for CI/doc builds
RUN_SOLVER = os.getenv("PYAEDT_RUN_SOLVER", "0") == "1"

# ### Create temporary directory
#
# Create a temporary working directory.
# The name of the working folder is stored in ``temp_folder.name``.
#
# > **Note:** The final cell in the notebook cleans up the temporary folder. If you want to
# > retrieve the AEDT project and data, do so before executing the final cell in the notebook.

temp_folder = tempfile.TemporaryDirectory(suffix=".ansys")

# ### Launch application
#
# Launch Maxwell 3D for eddy current analysis of the busbar system.

project_name = os.path.join(temp_folder.name, "busbar_joule_heating.aedt")
m3d = ansys.aedt.core.Maxwell3d(
project=project_name,
design="BusbarJouleHeating",
solution_type="Eddy Current",
version=AEDT_VERSION,
non_graphical=NG_MODE,
new_desktop=True,
)
m3d.modeler.model_units = "mm"

# ## Model Preparation
#
# Create the busbar geometry, assign materials and boundary conditions,
# and configure the electromagnetic analysis setup.

# ### Create 3D model
#
# Build the busbar geometry including main conductor and terminal tabs.
# Main busbar
busbar = m3d.modeler.create_box(origin=[0, 0, 0], sizes=[BUSBAR_L, BUSBAR_W, BUSBAR_H], name="MainBusbar")
m3d.assign_material(busbar, "copper")

# Input tabs
input_tab1 = m3d.modeler.create_box(origin=[-TAB_L, 1.0, 0.0], sizes=[TAB_L, TAB_W, BUSBAR_H], name="InputTab1")
m3d.assign_material(input_tab1, "copper")

input_tab2 = m3d.modeler.create_box(origin=[-TAB_L, 6.0, 0.0], sizes=[TAB_L, TAB_W, BUSBAR_H], name="InputTab2")
m3d.assign_material(input_tab2, "copper")

# Output tab
output_tab = m3d.modeler.create_box(origin=[BUSBAR_L, 3.0, 0.0], sizes=[TAB_L, 4.0, BUSBAR_H], name="OutputTab")
m3d.assign_material(output_tab, "copper")

# Unite all parts
united = m3d.modeler.unite([busbar, input_tab1, input_tab2, output_tab])
conductor = m3d.modeler[united] if isinstance(united, str) else united
conductor.name = "CompleteBusbar"

# ### Assign boundary conditions
#
# Set up current excitations on terminal faces following Kirchhoff's current law.

# Sort faces by x-coordinate to identify input and output terminals
faces_sorted = sorted(conductor.faces, key=lambda f: f.center[0])
left_x = faces_sorted[0].center[0]
right_x = faces_sorted[-1].center[0]

# Get faces at left and right ends
left_faces = [f for f in faces_sorted if abs(f.center[0] - left_x) < 1e-3]
right_faces = [f for f in faces_sorted if abs(f.center[0] - right_x) < 1e-3]

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

How about adding a comment explaining that the faces' IDs can be retrieved from the UI and entered here as well?

# Select terminal faces
input_face1 = left_faces[0].id
input_face2 = left_faces[1].id if len(left_faces) > 1 else left_faces[0].id
output_face = right_faces[0].id


# Assign current excitations (following Kirchhoff's current law)
current1 = m3d.assign_current(assignment=input_face1, amplitude=I1, phase=0, name="InputCurrent1")

current2 = m3d.assign_current(assignment=input_face2, amplitude=I2, phase=0, name="InputCurrent2")

current3 = m3d.assign_current(assignment=output_face, amplitude=-(I1 + I2), phase=0, name="OutputCurrent")

# Create air region for boundary conditions
air = m3d.modeler.create_air_region(x_pos=0, y_pos=50, z_pos=100, x_neg=0, y_neg=50, z_neg=100)

# ### Define solution setup
#
# Configure eddy current analysis with frequency and convergence settings.

setup = m3d.create_setup("EddyCurrentSetup")
setup.props["Frequency"] = f"{FREQ}Hz"
setup.props["PercentError"] = 2
# Reduce maximum passes for CI to shorten solve time
setup.props["MaximumPasses"] = 4
setup.props["MinimumPasses"] = 1
setup.props["PercentRefinement"] = 20

# Assign mesh for skin effect resolution
mesh = m3d.mesh.assign_length_mesh(
assignment=conductor.name,
maximum_length=3.0, # 3mm elements for skin effect resolution
name="ConductorMesh",
)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why not a skin depth mesh operation?


# ### Run analysis
#
# Execute the eddy current solver.

validation = m3d.validate_simple()
if RUN_SOLVER:
m3d.analyze_setup(setup.name)
else:
print("Solver run skipped (set PYAEDT_RUN_SOLVER=1 to enable).")

# ## Postprocess
#
# Extract and visualize the electromagnetic field results and calculate
# engineering metrics for the busbar Joule heating analysis.

# ### Evaluate loss
#
# Extract Ohmic loss (Joule heating) from the field solution.

if RUN_SOLVER:
setup_sweep = f"{setup.name} : LastAdaptive"
solution_data = m3d.post.get_solution_data(
expressions=["SolidLoss"],
report_category="EddyCurrent",
setup_sweep_name=setup_sweep,
)
total_loss = solution_data.data_magnitude()[0]
else:
total_loss = 0.0

# ### Visualize fields
#
# Create field plots to visualize current density, electric field, and power loss distributions.

if RUN_SOLVER:
j_plot = m3d.post.create_fieldplot_surface(assignment=conductor.name, quantity="Mag_J", plot_name="Current_Density_Magnitude")

e_plot = m3d.post.create_fieldplot_surface(assignment=conductor.name, quantity="Mag_E", plot_name="Electric_Field_Magnitude")

joule_plot = m3d.post.create_fieldplot_volume(
assignment=conductor.name,
quantity="Ohmic_Loss",
plot_name="Joule_Heating_Distribution",
)
else:
print("Field plots skipped (no solver run).")

# ### Calculate engineering metrics
#
# Compute key electrical parameters including resistance, loss density, and skin depth.
print("\nANALYSIS RESULTS")

# Basic electrical parameters
total_current = I1 + I2
busbar_volume = BUSBAR_L * BUSBAR_W * BUSBAR_H

# Ohmic Loss
print(f"Ohmic Loss (Joule heating): {total_loss:.6f} W")

# Loss density
loss_density = (total_loss / busbar_volume) if busbar_volume else 0.0
print(f"Loss density: {loss_density:.8f} W/mm³")
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is the volume returning mm3? or m3?


# Equivalent DC resistance
resistance = (total_loss / (total_current**2)) if total_current else 0.0
resistance_micro = resistance * 1e6
print(f"Equivalent DC resistance: {resistance_micro:.2f} µΩ")

# Skin depth calculation
mu0 = 4 * math.pi * 1e-7
sigma_cu = 5.8e7
omega = 2 * math.pi * FREQ
skin_depth_m = math.sqrt(2 / (omega * mu0 * sigma_cu))
skin_depth_mm = skin_depth_m * 1000
print(f"Skin depth at {FREQ} Hz: {skin_depth_mm:.3f} mm")
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why here?
Add the Skin depth calculation before the mesh operation.


current_density = (total_current / (BUSBAR_W * BUSBAR_H)) if (BUSBAR_W * BUSBAR_H) else 0.0
print(f"Average current density: {current_density:.2f} A/mm²")

power_per_amp_squared = (total_loss / (total_current**2)) if total_current else 0.0
print(f"Power per A²: {power_per_amp_squared*1e6:.2f} µW/A²")

# Comparison with conductor thickness
if BUSBAR_H < 2 * skin_depth_mm:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This comparison may not be accurate. How about cases when the bar dimension is marginally bigger or smaller than 2 * skin_depth_mm?
You can also move it to the beginning and create a section for the skin depth analysis.

print(f"Note: Busbar thickness ({BUSBAR_H}mm) < 2×skin depth ({2*skin_depth_mm:.1f}mm)")
print(f" Skin effect is significant - current distribution is non-uniform")
else:
print(f"Note: Busbar thickness ({BUSBAR_H}mm) > 2×skin depth ({2*skin_depth_mm:.1f}mm)")
print(f" Current flows mainly near surfaces due to skin effect")

print("\n--- Field Plot Information ---")
print("Current density magnitude (|J|): Shows current distribution")
print("Electric field magnitude (|E|): Shows electric field intensity")
print("Joule heating distribution: Shows power loss density")

# ## Finish
#
# ### Save the project

m3d.save_project()
m3d.release_desktop()
# Wait 3 seconds to allow AEDT to shut down before cleaning the temporary directory.
time.sleep(3)

# ### Clean up
#
# All project files are saved in the folder ``temp_folder.name``.
# If you've run this example as a Jupyter notebook, you
# can retrieve those project files. The following cell
# removes all temporary files, including the project folder.

temp_folder.cleanup()
Loading