M.I.N.D.S (Machine Intelligence & Data Science) is a well-structured, beginner-friendly, yet industry-focused repository designed to help you learn:
๐ค Artificial Intelligence & Machine Learning โ from zero to real-world deployment
This repository focuses on:
- โ Strong fundamentals
- โ Hands-on learning
- โ Clear explanations
- โ Real-world & industry-grade projects
This repository is perfect for:
- ๐ Students & beginners
- ๐งโ๐ป Developers switching to AI/ML
- ๐ Data Science aspirants
- ๐คฏ Learners confused by math & ML concepts
๐ No prior AI/ML experience required
๐ Python is taught from scratch
By completing this repository, you will be able to:
- ๐ Write clean & efficient Python code
- ๐ Analyze, clean & visualize data
- ๐ Understand math behind AI & ML
- ๐ค Build Machine Learning & Deep Learning models
- ๐ Work with GenAI & LLMs
- ๐ Deploy AI applications
- ๐ข Build industry-level AI projects
- Variables & Operators
- Conditional Statements & Loops
- Functions & Lambda Functions
- Lists, Tuples, Dictionaries & Sets
- List Comprehensions
- File Handling & JSON
- ๐งฑ Object-Oriented Programming (OOPs)
- Classes & Objects
- Inheritance
- Polymorphism
- Encapsulation
- Abstraction
- Data collection techniques
- Data preprocessing & cleaning
- Handling missing values
- Feature engineering
- ๐งฎ NumPy
- ๐ผ Pandas
- ๐ Matplotlib
- ๐จ Seaborn
- ๐ Statistics
- ๐ฒ Probability
- ๐ Central Limit Theorem
- ๐ Mean, Variance & Standard Deviation
- ๐ Correlation & Covariance
- ๐ง Math intuition behind ML algorithms
- ML workflow & pipeline
- Train-Test Split
- Model evaluation
- Classification & Regression
- Algorithms:
- Linear Regression
- Logistic Regression
- Naive Bayes
- KNN
- Decision Trees
- K-Means
- PCA (Dimensionality Reduction)
- Agent, Environment & Reward
- Precision, Recall & F1 Score
- BiasโVariance Tradeoff
- Overfitting & Underfitting
- Scikit-learn
- Kaggle
โ Multiple ML projects included
- Perceptron
- Forward & Backward Propagation
- FNN
- RNN
- LSTM
- CNN
- Transformers
- TensorFlow
- Keras
- PyTorch
โ Multiple Deep Learning projects
- ๐คฏ LLMs & Agents
- ๐ NLP
- ๐ญ GANs
- ๐ RAG
- ๐ง Agentic AI
- Cursor AI
- GitHub Copilot
- Claude
- OpenAI APIs
- โ๏ธ Flask (AI Backend)
- ๐จ HTML, CSS & JavaScript
- ๐ SQL for Data Science
- ๐ Git & GitHub
- ๐ณ Docker
- โธ Kubernetes
- ๐งฉ Minor & Major Projects
- ๐ญ Industry-grade Projects
- ๐ฐ Finance
- ๐ฏ Recommendation Systems
- ๐ฅ Medical
- ๐ E-commerce
- ๐ฌ Media
- ๐ค GenAI Assistant
M.I.N.D.S/
โ
โโโ 01_Python/
โโโ 02_Numpy/
โโโ 03_Pandas/
โโโ 04_Visualization/
โโโ 05_Math/
โโโ 06_Machine_Learning/
โโโ 07_Deep_Learning/
โโโ 08_GenAI/
โโโ 09_Deployment/
โ
โโโ LICENSE
โโโ README.md
This is an open-source learning project โค๏ธ
You can contribute by:
- โ๏ธ Improving documentation
- ๐ง Adding explanations
- ๐งช Adding projects
- ๐ Fixing bugs
If this repo helps you:
- โญ Star it
- ๐ Share it
- ๐ค Contribute back
Aura Farmer
Machine Learning โข Data Science โข GenAI โข Open Source
๐ก โAI is not magic โ itโs logic, math, and practice.โ