A Python package designed to process user input descriptions of technical products or components and generate structured summaries or specifications. It leverages LLMs to interpret the input text and extract key details such as features, return status, or related media references, enabling consistent data extraction for product management, customer support, or inventory tracking without handling the actual media files.
pip install techspec_extractfrom techspec_extract import techspec_extract
user_input = "Your user input text here"
response = techspec_extract(user_input)
print(response)user_input(str): The user input text to process.llm(Optional[BaseChatModel]): The LangChain LLM instance to use. If not provided, the defaultChatLLM7will be used.api_key(Optional[str]): The API key for LLM7. If not provided, the environment variableLLM7_API_KEYwill be used.
You can safely pass your own LLM instance if you want to use another LLM. Here are examples of how to use different LLMs:
from langchain_openai import ChatOpenAI
from techspec_extract import techspec_extract
llm = ChatOpenAI()
response = techspec_extract(user_input, llm=llm)from langchain_anthropic import ChatAnthropic
from techspec_extract import techspec_extract
llm = ChatAnthropic()
response = techspec_extract(user_input, llm=llm)from langchain_google_genai import ChatGoogleGenerativeAI
from techspec_extract import techspec_extract
llm = ChatGoogleGenerativeAI()
response = techspec_extract(user_input, llm=llm)The default rate limits for LLM7 free tier are sufficient for most use cases of this package. If you want higher rate limits for LLM7, you can pass your own API key via the environment variable LLM7_API_KEY or directly via the api_key parameter:
from techspec_extract import techspec_extract
user_input = "Your user input text here"
response = techspec_extract(user_input, api_key="your_api_key")You can get a free API key by registering at LLM7.
If you encounter any issues, please report them on the GitHub issues page.
- Eugene Evstafev
- Email: hi@eugene.plus
- GitHub: chigwell