Automated KYC and compliance workflow for regulated environmentsβenabling fast onboarding without compromising regulatory controls.
This system automates the entire KYC (Know Your Customer) and AML (Anti-Money Laundering) workflow, from document collection to final approvalβreducing onboarding friction while maintaining full regulatory compliance.
βββββββββββββββ βββββββββββββββ βββββββββββββββ βββββββββββββββ
β Document βββββΆβ Identity βββββΆβ Sanctions βββββΆβ Decision β
β Upload β β Verificationβ β Screening β β Engine β
βββββββββββββββ βββββββββββββββ βββββββββββββββ βββββββββββββββ
β
βββββββββββββββ βββββββββββββββ β
β Manual ββββββ Escalation ββββββββββββ
β Review β β Queue β
βββββββββββββββ βββββββββββββββ
- Document Handling - Automated document upload, validation, and OCR extraction
- Identity Verification - Integration with third-party KYC providers
- AML Screening - Sanctions list checking and PEP screening
- Decision Engine - Rule-based approval, rejection, and escalation logic
- Audit Trail - Complete logging for regulatory compliance
- API-First - RESTful APIs for integration with existing systems
src/
βββ api/ # REST API endpoints
β βββ routes.py
β βββ schemas.py
βββ core/ # Business logic
β βββ document_handler.py
β βββ identity_verifier.py
β βββ sanctions_screener.py
β βββ decision_engine.py
βββ integrations/ # Third-party APIs
β βββ kyc_provider.py
β βββ aml_provider.py
β βββ document_ocr.py
βββ models/ # Data models
β βββ customer.py
β βββ document.py
β βββ verification.py
βββ workflows/ # Workflow orchestration
β βββ kyc_workflow.py
βββ utils/ # Utilities
βββ audit_logger.py
βββ validators.py
# Clone repository
git clone https://github.com/daveedashar/kyc-compliance-automation.git
cd kyc-compliance-automation
# Install dependencies
pip install -r requirements.txt
# Configure environment
cp .env.example .env
# Edit .env with your API keys
# Run the service
python -m src.main| Endpoint | Method | Description |
|---|---|---|
/api/v1/customers |
POST | Create new customer for verification |
/api/v1/customers/{id}/documents |
POST | Upload verification documents |
/api/v1/customers/{id}/verify |
POST | Trigger verification workflow |
/api/v1/customers/{id}/status |
GET | Check verification status |
/api/v1/verifications/{id} |
GET | Get verification details |
/api/v1/escalations |
GET | List pending manual reviews |
# config.yaml
kyc:
provider: "jumio" # or "onfido", "veriff"
auto_approve_threshold: 0.85
aml:
providers:
- "sanctions_io"
- "comply_advantage"
check_interval: "daily"
decision:
rules:
- name: "high_risk_country"
action: "escalate"
- name: "pep_match"
action: "manual_review"
- name: "sanctions_hit"
action: "reject"PENDING β DOCUMENTS_UPLOADED β VERIFYING β [APPROVED | REJECTED | ESCALATED]
β
MANUAL_REVIEW β [APPROVED | REJECTED]
- β GDPR-compliant data handling
- β SOC 2 audit trail requirements
- β PCI-DSS data encryption
- β Configurable retention policies
- β Right to erasure support
# Run tests
pytest tests/ -v
# Run with coverage
pytest tests/ --cov=src --cov-report=html- 80% reduction in manual verification time
- 99.9% uptime for compliance operations
- < 5 min average verification time
- Zero compliance violations
MIT License - see LICENSE for details.
Daud Ashar
- GitHub: @daveedashar
- LinkedIn: /in/daudashar
- Email: daud-a@consultant.com