Skip to content
View davidfertube's full-sized avatar

Block or report davidfertube

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
davidfertube/README.md
Typing SVG
01001000 01100101 01101100 01101100 01101111 00101100 00100000 01010111 01101111 01110010 01101100 01100100

Portfolio LinkedIn X HuggingFace


> Building Production AI Systems for Energy & Industrial Operations_

Founding Engineer scaling AI from prototype to production. I architect agentic RAG systems, predictive ML pipelines, and compliance automation that run in enterprise environments.

class AIEngineer:
    def __init__(self):
        self.focus = [
            "Agentic RAG & Multi-Agent Orchestration",
            "Regulatory Compliance Automation",
            "Cloud-Native ML (Azure AI Foundry, GCP Vertex AI)"
        ]

    def deploy(self, agent) -> Production:
        return agent.scale_to_enterprise()

Ventures

Business Description Action
SpecVault AI-powered RAG for engineering teams—instant access to ASTM standards and steel specifications with cited answers in <2s Try It
Altaviz Predictive maintenance MLOps platform monitoring 10 compressor units across 4 Texas stations with real-time fleet health dashboards Try It

Experiments

experiments/
├── predictive-agent/    # LSTM-based RUL prediction for turbines
├── compliance-agent/    # NERC CIP compliance automation
├── anomaly-agent/       # Real-time turbine anomaly detection
└── vision-ai-safety/    # VLM for HSE compliance (Qwen2-VL)
Experiment Stack Code
Predictive Agent LSTM • Scikit-Learn • Plotly • Docker Code
Compliance Agent PydanticAI • DSPy • Mistral • FastAPI Code
Anomaly Agent Isolation Forest • Gradio • Time-Series Code
Vision AI Safety Qwen2-VL • Transformers • Gradio Code

Open Source Contributions

+ LangGraph    → Refactored FunctionMessage patterns, Enhanced fine-tuning docs
+ Pydantic     → Core library contributions
+ AutoGen      → Fixed Azure AI Client streaming stability
+ CrewAI       → URL validation for Azure Gateways
+ Transformers → Documentation improvements

LangGraph Pydantic AutoGen CrewAI


Technical Stack

┌────────────────────────────────────────────────────────────────────────────────────────────────────┐
│  AI/ML                                                                                             │
│  ├── LLMs: OpenAI, Claude, Gemini, Mistral                                                        │
│  ├── Agents: LangGraph, AutoGen, CrewAI, PydanticAI                                               │
│  ├── Vector DBs: Pinecone, ChromaDB, FAISS, Azure AI Search                                       │
│  └── MLOps: MLflow, W&B, Model Monitoring                                                         │
├────────────────────────────────────────────────────────────────────────────────────────────────────┤
│  Infrastructure                                                                                    │
│  ├── Cloud: Azure AI Foundry, GCP Vertex AI, AWS SageMaker                                        │
│  ├── Containers: Docker, Kubernetes (AKS/GKE)                                                     │
│  └── IaC: Terraform, GitHub Actions                                                               │
├────────────────────────────────────────────────────────────────────────────────────────────────────┤
│  Domain                                                                                            │
│  ├── Power: CCGT, Gas Turbines, SCADA/Historian                                                   │
│  ├── Grid: ERCOT, ISO Markets, Dispatch Optimization                                              │
│  └── Regulatory: NERC CIP, EPA Emissions, Safety Compliance                                       │
└────────────────────────────────────────────────────────────────────────────────────────────────────┘

Background

M.S. Artificial Intelligence Experience
University of Colorado Boulder (2027) 5+ years production software • 3+ years AI systems

Started as a founding engineer scaling a startup from zero to production. Now I build AI that operators trust with million-dollar equipment decisions.

Pinned Loading

  1. portfolio portfolio Public

    AI Engineer Portfolio | davidfernandez.dev

    TypeScript