Skip to content

Unsupervised Similarity Learning for Image Registration with Energy-Based Models (WBIR 2024)

Notifications You must be signed in to change notification settings

dgrzech/learnsim-ebm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

103 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Training

Examples of json files with the model parameters can be found in the folder /configs. Use the following command to train a similarity metric:

CUDA_VISIBLE_DEVICES=<device_ids> python train.py --config <path/to/config.json> --exp-name <exp_name>

Use the following command for testing:

CUDA_VISIBLE_DEVICES=<device_id> python test.py --config <path/to/config.json> --exp-name <exp_name> --resume <path/to/checkkpoint.pt>

About

Unsupervised Similarity Learning for Image Registration with Energy-Based Models (WBIR 2024)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages