Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
588 changes: 588 additions & 0 deletions src/3rdparty/fast_float/ascii_number.h

Large diffs are not rendered by default.

638 changes: 638 additions & 0 deletions src/3rdparty/fast_float/bigint.h

Large diffs are not rendered by default.

53 changes: 53 additions & 0 deletions src/3rdparty/fast_float/constexpr_feature_detect.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H

#ifdef __has_include
#if __has_include(<version>)
#include <version>
#endif
#endif

// Testing for https://wg21.link/N3652, adopted in C++14
#if defined(__cpp_constexpr) && __cpp_constexpr >= 201304
#define FASTFLOAT_CONSTEXPR14 constexpr
#else
#define FASTFLOAT_CONSTEXPR14
#endif

#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L
#define FASTFLOAT_HAS_BIT_CAST 1
#else
#define FASTFLOAT_HAS_BIT_CAST 0
#endif

#if defined(__cpp_lib_is_constant_evaluated) && \
__cpp_lib_is_constant_evaluated >= 201811L
#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1
#else
#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0
#endif

#if defined(__cpp_if_constexpr) && __cpp_if_constexpr >= 201606L
#define FASTFLOAT_IF_CONSTEXPR17(x) if constexpr (x)
#else
#define FASTFLOAT_IF_CONSTEXPR17(x) if (x)
#endif

// Testing for relevant C++20 constexpr library features
#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED && FASTFLOAT_HAS_BIT_CAST && \
defined(__cpp_lib_constexpr_algorithms) && \
__cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/
#define FASTFLOAT_CONSTEXPR20 constexpr
#define FASTFLOAT_IS_CONSTEXPR 1
#else
#define FASTFLOAT_CONSTEXPR20
#define FASTFLOAT_IS_CONSTEXPR 0
#endif

#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 0
#else
#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 1
#endif

#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
212 changes: 212 additions & 0 deletions src/3rdparty/fast_float/decimal_to_binary.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,212 @@
#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H
#define FASTFLOAT_DECIMAL_TO_BINARY_H

#include "float_common.h"
#include "fast_table.h"
#include <cfloat>
#include <cinttypes>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <cstring>

namespace fast_float {

// This will compute or rather approximate w * 5**q and return a pair of 64-bit
// words approximating the result, with the "high" part corresponding to the
// most significant bits and the low part corresponding to the least significant
// bits.
//
template <int bit_precision>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128
compute_product_approximation(int64_t q, uint64_t w) {
int const index = 2 * int(q - powers::smallest_power_of_five);
// For small values of q, e.g., q in [0,27], the answer is always exact
// because The line value128 firstproduct = full_multiplication(w,
// power_of_five_128[index]); gives the exact answer.
value128 firstproduct =
full_multiplication(w, powers::power_of_five_128[index]);
static_assert((bit_precision >= 0) && (bit_precision <= 64),
" precision should be in (0,64]");
constexpr uint64_t precision_mask =
(bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision)
: uint64_t(0xFFFFFFFFFFFFFFFF);
if ((firstproduct.high & precision_mask) ==
precision_mask) { // could further guard with (lower + w < lower)
// regarding the second product, we only need secondproduct.high, but our
// expectation is that the compiler will optimize this extra work away if
// needed.
value128 secondproduct =
full_multiplication(w, powers::power_of_five_128[index + 1]);
firstproduct.low += secondproduct.high;
if (secondproduct.high > firstproduct.low) {
firstproduct.high++;
}
}
return firstproduct;
}

namespace detail {
/**
* For q in (0,350), we have that
* f = (((152170 + 65536) * q ) >> 16);
* is equal to
* floor(p) + q
* where
* p = log(5**q)/log(2) = q * log(5)/log(2)
*
* For negative values of q in (-400,0), we have that
* f = (((152170 + 65536) * q ) >> 16);
* is equal to
* -ceil(p) + q
* where
* p = log(5**-q)/log(2) = -q * log(5)/log(2)
*/
constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept {
return (((152170 + 65536) * q) >> 16) + 63;
}
} // namespace detail

// create an adjusted mantissa, biased by the invalid power2
// for significant digits already multiplied by 10 ** q.
template <typename binary>
fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa
compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept {
int hilz = int(w >> 63) ^ 1;
adjusted_mantissa answer;
answer.mantissa = w << hilz;
int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent();
answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 +
invalid_am_bias);
return answer;
}

// w * 10 ** q, without rounding the representation up.
// the power2 in the exponent will be adjusted by invalid_am_bias.
template <typename binary>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
compute_error(int64_t q, uint64_t w) noexcept {
int lz = leading_zeroes(w);
w <<= lz;
value128 product =
compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
return compute_error_scaled<binary>(q, product.high, lz);
}

// Computers w * 10 ** q.
// The returned value should be a valid number that simply needs to be
// packed. However, in some very rare cases, the computation will fail. In such
// cases, we return an adjusted_mantissa with a negative power of 2: the caller
// should recompute in such cases.
template <typename binary>
fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
compute_float(int64_t q, uint64_t w) noexcept {
adjusted_mantissa answer;
if ((w == 0) || (q < binary::smallest_power_of_ten())) {
answer.power2 = 0;
answer.mantissa = 0;
// result should be zero
return answer;
}
if (q > binary::largest_power_of_ten()) {
// we want to get infinity:
answer.power2 = binary::infinite_power();
answer.mantissa = 0;
return answer;
}
// At this point in time q is in [powers::smallest_power_of_five,
// powers::largest_power_of_five].

// We want the most significant bit of i to be 1. Shift if needed.
int lz = leading_zeroes(w);
w <<= lz;

// The required precision is binary::mantissa_explicit_bits() + 3 because
// 1. We need the implicit bit
// 2. We need an extra bit for rounding purposes
// 3. We might lose a bit due to the "upperbit" routine (result too small,
// requiring a shift)

value128 product =
compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
// The computed 'product' is always sufficient.
// Mathematical proof:
// Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to
// appear) See script/mushtak_lemire.py

// The "compute_product_approximation" function can be slightly slower than a
// branchless approach: value128 product = compute_product(q, w); but in
// practice, we can win big with the compute_product_approximation if its
// additional branch is easily predicted. Which is best is data specific.
int upperbit = int(product.high >> 63);
int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3;

answer.mantissa = product.high >> shift;

answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz -
binary::minimum_exponent());
if (answer.power2 <= 0) { // we have a subnormal?
// Here have that answer.power2 <= 0 so -answer.power2 >= 0
if (-answer.power2 + 1 >=
64) { // if we have more than 64 bits below the minimum exponent, you
// have a zero for sure.
answer.power2 = 0;
answer.mantissa = 0;
// result should be zero
return answer;
}
// next line is safe because -answer.power2 + 1 < 64
answer.mantissa >>= -answer.power2 + 1;
// Thankfully, we can't have both "round-to-even" and subnormals because
// "round-to-even" only occurs for powers close to 0 in the 32-bit and
// and 64-bit case (with no more than 19 digits).
answer.mantissa += (answer.mantissa & 1); // round up
answer.mantissa >>= 1;
// There is a weird scenario where we don't have a subnormal but just.
// Suppose we start with 2.2250738585072013e-308, we end up
// with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal
// whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round
// up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer
// subnormal, but we can only know this after rounding.
// So we only declare a subnormal if we are smaller than the threshold.
answer.power2 =
(answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits()))
? 0
: 1;
return answer;
}

// usually, we round *up*, but if we fall right in between and and we have an
// even basis, we need to round down
// We are only concerned with the cases where 5**q fits in single 64-bit word.
if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) &&
(q <= binary::max_exponent_round_to_even()) &&
((answer.mantissa & 3) == 1)) { // we may fall between two floats!
// To be in-between two floats we need that in doing
// answer.mantissa = product.high >> (upperbit + 64 -
// binary::mantissa_explicit_bits() - 3);
// ... we dropped out only zeroes. But if this happened, then we can go
// back!!!
if ((answer.mantissa << shift) == product.high) {
answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up
}
}

answer.mantissa += (answer.mantissa & 1); // round up
answer.mantissa >>= 1;
if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) {
answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits());
answer.power2++; // undo previous addition
}

answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits());
if (answer.power2 >= binary::infinite_power()) { // infinity
answer.power2 = binary::infinite_power();
answer.mantissa = 0;
}
return answer;
}

} // namespace fast_float

#endif
Loading