📚 FEAT: A Preference Feedback Dataset through a Cost-Effective Auto-Generation and Labeling Framework for English AI Tutoring
Teacher Feedback Preference Datasets for English AI Tutoring
Welcome to the official release of the DIRECT family of preference datasets! 🎉
These resources support research on learning‑to‑rank, preference learning, and feedback generation for intelligent tutoring systems.
-
Pairwise preference triples
(prompt, chosen, rejected)ready for RLHF‑style fine‑tuning. -
Dual‑variant design for both datasets:
- base – the canonical preference set built within each dialogue context.
- mixed – a harder set that pairs a chosen feedback from a different context as the
rejectedsample, encouraging cross‑context discrimination.
-
Criteria‑aware splits – choose between 2‑criteria (Correct & Revealing) and 5‑criteria (Correct, Revealing, Guidance, Diagnostic, Encouragement) versions.
-
Simple JSON format & clean train/test splits for painless loading.
📢 Note — DIRECT‑Manual (DIRECT-M):
The DIRECT‑M is hosted in a separate repository:
datasets/
├── DIRECT-G/
│ ├── base/
│ │ ├── train.criteria_2.json
│ │ ├── train.criteria_5.json
│ │ ├── test.criteria_2.json
│ │ └── test.criteria_5.json
│ └── mixed/
│ ├── train.criteria_2.json
│ ├── train.criteria_5.json
│ ├── test.criteria_2.json
│ └── test.criteria_5.json
└── DIRECT-M/ ← see: https://github.com/DIRECTDataset/DIRECTManual
Each JSON line follows:
{
"prompt": "<story>",
"chosen": "<w/ criteria feedback>",
"rejected": "<w/o criteria feedback>"
}<split>.criteria_<k>.json
-
split ∈ {
train,test} -
k =
2or5→ number of feedback criteria:- 2 → Correct & Revealing only.
- 5 → Correct, Revealing, Guidance, Diagnostic, Encouragement.
Example filenames: train.criteria_2.json, test.criteria_5.json.
| Dataset | Variant | Train | Test |
|---|---|---|---|
| DIRECT‑G | base | 3,996 | 444 |
| DIRECT‑G | mixed | 7,992 | 888 |
All files are released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license unless stated otherwise. 🆓
If you use DIRECT‑M or DIRECT‑G, please cite:
@inproceedings{seo-etal-2025-feat,
title = "{FEAT}: A Preference Feedback Dataset through a Cost-Effective Auto-Generation and Labeling Framework for {E}nglish {AI} Tutoring",
author = "Seo, Hyein and
Hwang, Taewook and
Lee, Yohan and
Jung, Sangkeun",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.acl-short.45/",
doi = "10.18653/v1/2025.acl-short.45",
pages = "575--589",
ISBN = "979-8-89176-252-7",
}