An advanced machine learning pipeline for analyzing Traumatic Brain Injury (TBI) data using multi-modal approaches.
This project implements a sophisticated AI pipeline for TBI analysis, leveraging state-of-the-art machine learning architectures including NAIM and TabNet.
- 📊 Flexible data processing pipeline for TBI datasets
- 🔄 Multi-modal learning support (clinical + text data)
- ⚙️ Hydra-based configurable model architectures
- 📈 Integrated logging with TensorBoard and W&B
- 📊 Comprehensive evaluation metrics and visualization
- Python 3.8 or higher
- CUDA-compatible GPU (recommended)
- Git
- Clone the repository
git clone https://github.com/khiemducdoan/MyBachelorThesis.git
cd MyBachelorThesis- Set up virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate- Install dependencies
pip install -r requirements.txt| Step | Description |
|---|---|
| Raw Data | Place TBI data in dataset/raw/ |
| Text Data | Ensure CSV format with required columns |
| Preprocessing | Use notebooks in dataset/ for cleaning |
Configurations are managed through Hydra in the configs/ directory:
configs/
├── main.yaml # Main configuration
├── model/ # Model-specific configs
├── data/ # Dataset configs
└── default/ # Default parameters
Modifying Settings:
# Via command line
python train.py model=naim_text data.batch_size=32# Basic training
python train.py
# With specific config
python train.py experiment=tbi_naim
# Hyperparameter sweep
python train.py logging.sweep=true| Tool | Location | Purpose |
|---|---|---|
| TensorBoard | outputs/logs/ |
Training progress |
| Checkpoints | outputs/<date>/ |
Model saves |
| W&B | Online dashboard | Experiment tracking |
MyBachelorThesis/
├── 📁 configs/ # Configuration files
├── 📁 dataset/ # Data and preprocessing
├── 📁 src/ # Source code
│ ├── models/ # Model implementations
│ └── utils/ # Utility functions
├── 📁 outputs/ # Training outputs
└── 📁 notebooks/ # Analysis notebooks
For questions about the dataset or project, please email: vinakhiem120@gmail.com