[mlir][spirv] Add Element Binary operators to TOSA Ext Inst Set#179627
[mlir][spirv] Add Element Binary operators to TOSA Ext Inst Set#179627davidegrohmann wants to merge 1 commit intollvm:mainfrom
Conversation
|
@llvm/pr-subscribers-mlir @llvm/pr-subscribers-mlir-spirv Author: Davide Grohmann (davidegrohmann) ChangesThis patch introduces the following element binary operators:
Also dialect and serialization round-trip tests have been added. Change-Id: I477dec54212d4201230ba63753c4138fdcb83915 Patch is 92.84 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/179627.diff 5 Files Affected:
diff --git a/mlir/include/mlir/Dialect/SPIRV/IR/SPIRVTosaOps.td b/mlir/include/mlir/Dialect/SPIRV/IR/SPIRVTosaOps.td
index 61e8ea2c9ebc8..d81985fb9a40f 100644
--- a/mlir/include/mlir/Dialect/SPIRV/IR/SPIRVTosaOps.td
+++ b/mlir/include/mlir/Dialect/SPIRV/IR/SPIRVTosaOps.td
@@ -863,4 +863,808 @@ def SPIRV_TosaTanhOp : SPIRV_TosaOpWithResult<"Tanh", 13, [Pure,
}
+def SPIRV_TosaAddOp : SPIRV_TosaOpWithResult<"Add", 14, [Pure,
+ AllElementTypesMatch<["input1", "input2", "output"]>,
+ AllRanksMatch<["input1", "input2"]>]> {
+ let summary = "Addition operator.";
+
+ let description = [{
+ Elementwise Addition of input1 and input2. Axis of size 1 will be broadcast,
+ as necessary. Rank of input tensors must match.
+
+ References:
+ * https://github.khronos.org/SPIRV-Registry/extended/TOSA.001000.1.html#_add
+ * https://www.mlplatform.org/tosa/tosa_spec_1_0_1.html#_add
+
+ #### Example:
+ ```mlir
+ %0 = spirv.Tosa.Add %arg0, %arg1 : !spirv.arm.tensor<4x7x3x10xi32>, !spirv.arm.tensor<4x7x3x1xi32> -> !spirv.arm.tensor<4x7x3x10xi32>
+ %0 = spirv.Tosa.Add %arg0, %arg1 : !spirv.arm.tensor<26x37x18xf16>, !spirv.arm.tensor<1x37x18xf16> -> !spirv.arm.tensor<26x37x18xf16>
+ ```
+ }];
+
+ let arguments = (ins
+ SPIRV_TosaNumerical_TensorArm: $input1,
+ SPIRV_TosaNumerical_TensorArm: $input2
+ );
+
+ let results = (outs
+ SPIRV_TosaNumerical_TensorArm: $output
+ );
+
+ let assemblyFormat = [{
+ $input1 `,`
+ $input2
+ attr-dict `:` type(operands) `->` type(results)
+ }];
+
+ let extraClassDeclaration = extraBaseClassDeclaration#[{
+ ::mlir::spirv::TensorArmType getInput1Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput1().getType());
+ }
+ ::mlir::spirv::TensorArmType getInput2Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput2().getType());
+ }
+ }];
+}
+
+
+def SPIRV_TosaArithmeticRightShiftOp : SPIRV_TosaOpWithResult<"ArithmeticRightShift", 15, [Pure,
+ AllElementTypesMatch<["input1", "input2", "output"]>,
+ AllRanksMatch<["input1", "input2"]>]> {
+ let summary = "Arithmetic Right Shift.";
+
+ let description = [{
+ Elementwise Arithmetic Right Shift of input1 by the amount specified in
+ input2. Axis of size 1 will be broadcast, as necessary. Rank of input tensors
+ must match.
+
+ References:
+ * https://github.khronos.org/SPIRV-Registry/extended/TOSA.001000.1.html#_arithmetic_right_shift
+ * https://www.mlplatform.org/tosa/tosa_spec_1_0_1.html#_arithmetic_right_shift
+
+ #### Example:
+ ```mlir
+ %1 = spirv.Tosa.ArithmeticRightShift round = true, %arg0, %arg1 : !spirv.arm.tensor<1x47x22xi16>, !spirv.arm.tensor<49x47x22xi16> -> !spirv.arm.tensor<49x47x22xi16>
+ ```
+ }];
+
+ let arguments = (ins
+ SPIRV_BoolConstAttr: $round,
+ SPIRV_TosaInteger_TensorArm: $input1,
+ SPIRV_TosaInteger_TensorArm: $input2
+ );
+
+ let results = (outs
+ SPIRV_TosaInteger_TensorArm: $output
+ );
+
+ let assemblyFormat = [{
+ `round` `=` $round `,`
+ $input1 `,`
+ $input2
+ attr-dict `:` type(operands) `->` type(results)
+ }];
+
+ let extraClassDeclaration = extraBaseClassDeclaration#[{
+ ::mlir::spirv::TensorArmType getInput1Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput1().getType());
+ }
+ ::mlir::spirv::TensorArmType getInput2Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput2().getType());
+ }
+ }];
+}
+
+
+def SPIRV_TosaBitwiseAndOp : SPIRV_TosaOpWithResult<"BitwiseAnd", 16, [Pure,
+ AllElementTypesMatch<["input1", "input2", "output"]>,
+ AllRanksMatch<["input1", "input2"]>]> {
+ let summary = "Bitwise AND operator.";
+
+ let description = [{
+ Elementwise Bitwise AND of input1 and input2. Axis of size 1
+ will be broadcast as necessary. Rank of input tensors must match.
+
+ References:
+ * https://github.khronos.org/SPIRV-Registry/extended/TOSA.001000.1.html#_bitwise_and
+ * https://www.mlplatform.org/tosa/tosa_spec_1_0_1.html#_bitwise_and
+
+ #### Example:
+ ```mlir
+ %0 = spirv.Tosa.BitwiseAnd %arg0, %arg1 : !spirv.arm.tensor<4x1x7x12xi16>, !spirv.arm.tensor<4x13x7x12xi16> -> !spirv.arm.tensor<4x13x7x12xi16>
+ ```
+ }];
+
+ let arguments = (ins
+ SPIRV_TosaInteger_TensorArm: $input1,
+ SPIRV_TosaInteger_TensorArm: $input2
+ );
+
+ let results = (outs
+ SPIRV_TosaInteger_TensorArm: $output
+ );
+
+ let assemblyFormat = [{
+ $input1 `,`
+ $input2
+ attr-dict `:` type(operands) `->` type(results)
+ }];
+
+ let extraClassDeclaration = extraBaseClassDeclaration#[{
+ ::mlir::spirv::TensorArmType getInput1Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput1().getType());
+ }
+ ::mlir::spirv::TensorArmType getInput2Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput2().getType());
+ }
+ }];
+}
+
+
+def SPIRV_TosaBitwiseOrOp : SPIRV_TosaOpWithResult<"BitwiseOr", 17, [Pure,
+ AllElementTypesMatch<["input1", "input2", "output"]>,
+ AllRanksMatch<["input1", "input2"]>]> {
+ let summary = "Bitwise OR operator.";
+
+ let description = [{
+ Elementwise Bitwise OR of input1 and input2. Axis of size 1 will be
+ broadcast as necessary. Rank of input tensors must match.
+
+ References:
+ * https://github.khronos.org/SPIRV-Registry/extended/TOSA.001000.1.html#_bitwise_or
+ * https://www.mlplatform.org/tosa/tosa_spec_1_0_1.html#_bitwise_or
+
+ #### Example:
+ ```mlir
+ %0 = spirv.Tosa.BitwiseOr %arg0, %arg1 : !spirv.arm.tensor<11x30x23xi32>, !spirv.arm.tensor<1x30x23xi32> -> !spirv.arm.tensor<11x30x23xi32>
+ ```
+ }];
+
+ let arguments = (ins
+ SPIRV_TosaInteger_TensorArm: $input1,
+ SPIRV_TosaInteger_TensorArm: $input2
+ );
+
+ let results = (outs
+ SPIRV_TosaInteger_TensorArm: $output
+ );
+
+ let assemblyFormat = [{
+ $input1 `,`
+ $input2
+ attr-dict `:` type(operands) `->` type(results)
+ }];
+
+ let extraClassDeclaration = extraBaseClassDeclaration#[{
+ ::mlir::spirv::TensorArmType getInput1Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput1().getType());
+ }
+ ::mlir::spirv::TensorArmType getInput2Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput2().getType());
+ }
+ }];
+}
+
+
+def SPIRV_TosaBitwiseXorOp : SPIRV_TosaOpWithResult<"BitwiseXor", 18, [Pure,
+ AllElementTypesMatch<["input1", "input2", "output"]>,
+ AllRanksMatch<["input1", "input2"]>]> {
+ let summary = "Bitwise XOR operator.";
+
+ let description = [{
+ Elementwise Bitwise XOR of input1 and input2. Axis of size 1 will be
+ broadcast as necessary. Rank of input tensors must match.
+
+ References:
+ * https://github.khronos.org/SPIRV-Registry/extended/TOSA.001000.1.html#_bitwise_xor
+ * https://www.mlplatform.org/tosa/tosa_spec_1_0_1.html#_bitwise_xor
+
+ #### Example:
+ ```mlir
+ %0 = spirv.Tosa.BitwiseXor %arg0, %arg1 : !spirv.arm.tensor<4x8x13x9xi16>, !spirv.arm.tensor<4x8x1x9xi16> -> !spirv.arm.tensor<4x8x13x9xi16>
+ ```
+ }];
+
+ let arguments = (ins
+ SPIRV_TosaInteger_TensorArm: $input1,
+ SPIRV_TosaInteger_TensorArm: $input2
+ );
+
+ let results = (outs
+ SPIRV_TosaInteger_TensorArm: $output
+ );
+
+ let assemblyFormat = [{
+ $input1 `,`
+ $input2
+ attr-dict `:` type(operands) `->` type(results)
+ }];
+
+ let extraClassDeclaration = extraBaseClassDeclaration#[{
+ ::mlir::spirv::TensorArmType getInput1Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput1().getType());
+ }
+ ::mlir::spirv::TensorArmType getInput2Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput2().getType());
+ }
+ }];
+}
+
+
+def SPIRV_TosaIntDivOp : SPIRV_TosaOpWithResult<"IntDiv", 19, [Pure]> {
+ let summary = "Integer Divide operator.";
+
+ let description = [{
+ Elementwise Integer Divide of input1 by input2. Axis of size 1 will be
+ broadcast as necessary. Rank of input tensors must match.
+
+ The result of the divide is truncated towards zero. Expected use is for
+ operations on non-scaled integers. Floating point divide should use
+ `spirv.Tosa.Reciprocal` and `spirv.Tosa.Mul`. Quantized integer divide
+ should use `spirv.Tosa.Table`(for $ 1/x $) and `spirv.Tosa.Mul`.
+
+ References:
+ * https://github.khronos.org/SPIRV-Registry/extended/TOSA.001000.1.html#_intdiv
+ * https://www.mlplatform.org/tosa/tosa_spec_1_0_1.html#_intdiv
+
+ #### Example:
+ ```mlir
+ %0 = spirv.Tosa.IntDiv %arg0, %arg1 : !spirv.arm.tensor<1x65533x1xi32>, !spirv.arm.tensor<2x65533x1xi32> -> !spirv.arm.tensor<2x65533x1xi32>
+ ```
+ }];
+
+ let arguments = (ins
+ SPIRV_Int32_TensorArm: $input1,
+ SPIRV_Int32_TensorArm: $input2
+ );
+
+ let results = (outs
+ SPIRV_Int32_TensorArm: $output
+ );
+
+ let assemblyFormat = [{
+ $input1 `,`
+ $input2
+ attr-dict `:` type(operands) `->` type(results)
+ }];
+
+ let extraClassDeclaration = extraBaseClassDeclaration#[{
+ ::mlir::spirv::TensorArmType getInput1Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput1().getType());
+ }
+ ::mlir::spirv::TensorArmType getInput2Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput2().getType());
+ }
+ }];
+}
+
+
+def SPIRV_TosaLogicalAndOp : SPIRV_TosaOpWithResult<"LogicalAnd", 20, [Pure]> {
+ let summary = "Logical AND operator.";
+
+ let description = [{
+ Elementwise Logical AND of input1 and input2. Axis of size 1 will be
+ broadcast, as necessary. Rank of input tensors must match.
+
+ References:
+ * https://github.khronos.org/SPIRV-Registry/extended/TOSA.001000.1.html#_logical_and
+ * https://www.mlplatform.org/tosa/tosa_spec_1_0_1.html#_logical_and
+
+ #### Example:
+ ```mlir
+ %0 = spirv.Tosa.LogicalAnd %arg0, %arg1 : !spirv.arm.tensor<2x1x7x11xi1>, !spirv.arm.tensor<2x4x7x11xi1> -> !spirv.arm.tensor<2x4x7x11xi1>
+ ```
+ }];
+
+ let arguments = (ins
+ SPIRV_Bool_TensorArm: $input1,
+ SPIRV_Bool_TensorArm: $input2
+ );
+
+ let results = (outs
+ SPIRV_Bool_TensorArm: $output
+ );
+
+ let assemblyFormat = [{
+ $input1 `,`
+ $input2
+ attr-dict `:` type(operands) `->` type(results)
+ }];
+
+ let extraClassDeclaration = extraBaseClassDeclaration#[{
+ ::mlir::spirv::TensorArmType getInput1Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput1().getType());
+ }
+ ::mlir::spirv::TensorArmType getInput2Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput2().getType());
+ }
+ }];
+}
+
+
+def SPIRV_TosaLogicalLeftShiftOp : SPIRV_TosaOpWithResult<"LogicalLeftShift", 21, [Pure,
+ AllElementTypesMatch<["input1", "input2", "output"]>,
+ AllRanksMatch<["input1", "input2"]>]> {
+ let summary = "Logical Left Shift operator.";
+
+ let description = [{
+ Elementwise Logical Left Shift of input1 by the amount specified in input2.
+ Axis of size 1 will be broadcast, as necessary.
+ Rank of input tensors must match.
+
+ References:
+ * https://github.khronos.org/SPIRV-Registry/extended/TOSA.001000.1.html#_logical_left_shift
+ * https://www.mlplatform.org/tosa/tosa_spec_1_0_1.html#_logical_left_shift
+
+ #### Example:
+ ```mlir
+ %0 = spirv.Tosa.LogicalLeftShift %arg0, %arg1 : !spirv.arm.tensor<7x1x11x4xi8>, !spirv.arm.tensor<7x8x11x4xi8> -> !spirv.arm.tensor<7x8x11x4xi8>
+ ```
+ }];
+
+ let arguments = (ins
+ SPIRV_TosaInteger_TensorArm: $input1,
+ SPIRV_TosaInteger_TensorArm: $input2
+ );
+
+ let results = (outs
+ SPIRV_TosaInteger_TensorArm: $output
+ );
+
+ let assemblyFormat = [{
+ $input1 `,`
+ $input2
+ attr-dict `:` type(operands) `->` type(results)
+ }];
+
+ let extraClassDeclaration = extraBaseClassDeclaration#[{
+ ::mlir::spirv::TensorArmType getInput1Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput1().getType());
+ }
+ ::mlir::spirv::TensorArmType getInput2Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput2().getType());
+ }
+ }];
+}
+
+
+def SPIRV_TosaLogicalRightShiftOp : SPIRV_TosaOpWithResult<"LogicalRightShift", 22, [Pure,
+ AllElementTypesMatch<["input1", "input2", "output"]>,
+ AllRanksMatch<["input1", "input2"]>]> {
+ let summary = "Logical Right Shift operator.";
+
+ let description = [{
+ Elementwise Logical Right Shift of input1 by the amount specified in input2.
+ Axis of size 1 will be broadcast, as necessary. Rank of input tensors must
+ match.
+
+ References:
+ * https://github.khronos.org/SPIRV-Registry/extended/TOSA.001000.1.html#_logical_right_shift
+ * https://www.mlplatform.org/tosa/tosa_spec_1_0_1.html#_logical_right_shift
+
+ #### Example:
+ ```mlir
+ %0 = spirv.Tosa.LogicalRightShift %arg0, %arg1 : !spirv.arm.tensor<6x13x1x19xi8>, !spirv.arm.tensor<6x13x6x19xi8> -> !spirv.arm.tensor<6x13x6x19xi8>
+ ```
+ }];
+
+ let arguments = (ins
+ SPIRV_TosaInteger_TensorArm: $input1,
+ SPIRV_TosaInteger_TensorArm: $input2
+ );
+
+ let results = (outs
+ SPIRV_TosaInteger_TensorArm: $output
+ );
+
+ let assemblyFormat = [{
+ $input1 `,`
+ $input2
+ attr-dict `:` type(operands) `->` type(results)
+ }];
+
+ let extraClassDeclaration = extraBaseClassDeclaration#[{
+ ::mlir::spirv::TensorArmType getInput1Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput1().getType());
+ }
+ ::mlir::spirv::TensorArmType getInput2Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput2().getType());
+ }
+ }];
+}
+
+
+def SPIRV_TosaLogicalOrOp : SPIRV_TosaOpWithResult<"LogicalOr", 23, [Pure]> {
+ let summary = "Logical OR operator.";
+
+ let description = [{
+ Elementwise logical OR of input1 and input2. Axis of size 1 will be
+ broadcast as necessary. Rank of input tensors must match.
+
+ References:
+ * https://github.khronos.org/SPIRV-Registry/extended/TOSA.001000.1.html#_logical_or
+ * https://www.mlplatform.org/tosa/tosa_spec_1_0_1.html#_logical_or
+
+ #### Example:
+ ```mlir
+ %0 = spirv.Tosa.LogicalOr %arg0, %arg1 : !spirv.arm.tensor<3x6x12x5xi1>, !spirv.arm.tensor<3x6x1x5xi1> -> !spirv.arm.tensor<3x6x12x5xi1>
+ ```
+ }];
+
+ let arguments = (ins
+ SPIRV_Bool_TensorArm: $input1,
+ SPIRV_Bool_TensorArm: $input2
+ );
+
+ let results = (outs
+ SPIRV_Bool_TensorArm: $output
+ );
+
+ let assemblyFormat = [{
+ $input1 `,`
+ $input2
+ attr-dict `:` type(operands) `->` type(results)
+ }];
+
+ let extraClassDeclaration = extraBaseClassDeclaration#[{
+ ::mlir::spirv::TensorArmType getInput1Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput1().getType());
+ }
+ ::mlir::spirv::TensorArmType getInput2Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput2().getType());
+ }
+ }];
+}
+
+
+def SPIRV_TosaLogicalXorOp : SPIRV_TosaOpWithResult<"LogicalXor", 24, [Pure]> {
+ let summary = "Logical XOR operator.";
+
+ let description = [{
+ Elementwise logical XOR of input1 and input2. Axis of size 1 will be
+ broadcast as necessary. Rank of input tensors must match.
+
+ References:
+ * https://github.khronos.org/SPIRV-Registry/extended/TOSA.001000.1.html#_logical_xor
+ * https://www.mlplatform.org/tosa/tosa_spec_1_0_1.html#_logical_xor
+
+ #### Example:
+ ```mlir
+ %0 = spirv.Tosa.LogicalXor %arg0, %arg1 : !spirv.arm.tensor<11x4x9x12xi1>, !spirv.arm.tensor<11x4x9x1xi1> -> !spirv.arm.tensor<11x4x9x12xi1>
+ ```
+ }];
+
+ let arguments = (ins
+ SPIRV_Bool_TensorArm: $input1,
+ SPIRV_Bool_TensorArm: $input2
+ );
+
+ let results = (outs
+ SPIRV_Bool_TensorArm: $output
+ );
+
+ let assemblyFormat = [{
+ $input1 `,`
+ $input2
+ attr-dict `:` type(operands) `->` type(results)
+ }];
+
+ let extraClassDeclaration = extraBaseClassDeclaration#[{
+ ::mlir::spirv::TensorArmType getInput1Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput1().getType());
+ }
+ ::mlir::spirv::TensorArmType getInput2Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput2().getType());
+ }
+ }];
+}
+
+
+def SPIRV_TosaMaximumOp : SPIRV_TosaOpWithResult<"Maximum", 25, [Pure,
+ AllElementTypesMatch<["input1", "input2", "output"]>,
+ AllRanksMatch<["input1", "input2"]>,
+ TypeConstraintImplicationOn<"input1", AnyInteger, "input1", [I32]>,
+ TypeConstraintImplicationOn<"input2", AnyInteger, "input2", [I32]>,
+ TypeConstraintImplicationOn<"output", AnyInteger, "output", [I32]>]> {
+ let summary = "Maximum.";
+
+ let description = [{
+ Elementwise maximum of input1 and input2. Axis of size 1 will be broadcast,
+ as necessary. Rank of input tensors must match.
+
+ References:
+ * https://github.khronos.org/SPIRV-Registry/extended/TOSA.001000.1.html#_maximum
+ * https://www.mlplatform.org/tosa/tosa_spec_1_0_1.html#_maximum
+
+ #### Example:
+ ```mlir
+ %1 = spirv.Tosa.Maximum nan_mode = <Propagate>, %arg0, %arg1 : !spirv.arm.tensor<1x2x65533x1xi32>, !spirv.arm.tensor<1x2x65533x2xi32> -> !spirv.arm.tensor<1x2x65533x2xi32>
+ %1 = spirv.Tosa.Maximum nan_mode = <Ignore>, %arg0, %arg1 : !spirv.arm.tensor<1x12x14x7xf16>, !spirv.arm.tensor<11x12x14x7xf16> -> !spirv.arm.tensor<11x12x14x7xf16>
+ ```
+ }];
+
+ let arguments = (ins
+ SPIRV_TosaExtNaNPropagationModeAttr: $nan_mode,
+ SPIRV_TosaNumerical_TensorArm: $input1,
+ SPIRV_TosaNumerical_TensorArm: $input2
+ );
+
+ let results = (outs
+ SPIRV_TosaNumerical_TensorArm: $output
+ );
+
+ let assemblyFormat = [{
+ `nan_mode` `=` $nan_mode `,`
+ $input1 `,`
+ $input2
+ attr-dict `:` type(operands) `->` type(results)
+ }];
+
+ let extraClassDeclaration = extraBaseClassDeclaration#[{
+ ::mlir::spirv::TensorArmType getInput1Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput1().getType());
+ }
+ ::mlir::spirv::TensorArmType getInput2Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput2().getType());
+ }
+ }];
+}
+
+
+def SPIRV_TosaMinimumOp : SPIRV_TosaOpWithResult<"Minimum", 26, [Pure,
+ AllElementTypesMatch<["input1", "input2", "output"]>,
+ AllRanksMatch<["input1", "input2"]>,
+ TypeConstraintImplicationOn<"input1", AnyInteger, "input1", [I32]>,
+ TypeConstraintImplicationOn<"input2", AnyInteger, "input2", [I32]>,
+ TypeConstraintImplicationOn<"output", AnyInteger, "output", [I32]>]> {
+ let summary = "Minimum.";
+
+ let description = [{
+ Elementwise minimum of input1 and input2. Axis of size 1 will be broadcast,
+ as necessary. Rank of input tensors must match.
+
+ References:
+ * https://github.khronos.org/SPIRV-Registry/extended/TOSA.001000.1.html#_minimum
+ * https://www.mlplatform.org/tosa/tosa_spec_1_0_1.html#_minimum
+
+ #### Example:
+ ```mlir
+ %1 = spirv.Tosa.Minimum nan_mode = <Propagate>, %arg0, %arg1 : !spirv.arm.tensor<15x2x10x11xi32>, !spirv.arm.tensor<15x1x10x11xi32> -> !spirv.arm.tensor<15x2x10x11xi32>
+ %1 = spirv.Tosa.Minimum nan_mode = <Propagate>, %arg0, %arg1 : !spirv.arm.tensor<1x65531x2x1xf32>, !spirv.arm.tensor<1x1x2x1xf32> -> !spirv.arm.tensor<1x65531x2x1xf32>
+ ```
+ }];
+
+ let arguments = (ins
+ SPIRV_TosaExtNaNPropagationModeAttr: $nan_mode,
+ SPIRV_TosaNumerical_TensorArm: $input1,
+ SPIRV_TosaNumerical_TensorArm: $input2
+ );
+
+ let results = (outs
+ SPIRV_TosaNumerical_TensorArm: $output
+ );
+
+ let assemblyFormat = [{
+ `nan_mode` `=` $nan_mode `,`
+ $input1 `,`
+ $input2
+ attr-dict `:` type(operands) `->` type(results)
+ }];
+
+ let extraClassDeclaration = extraBaseClassDeclaration#[{
+ ::mlir::spirv::TensorArmType getInput1Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput1().getType());
+ }
+ ::mlir::spirv::TensorArmType getInput2Type() {
+ return cast<::mlir::spirv::TensorArmType>(getInput2().getType());
+ }
+ }];
+}
+
+
+def SPIRV_TosaMulOp : SPIRV_TosaOpWithResult<"Mul", 27, [Pure,
+ AllElementTypesMatch<["input1", "input2"]>,
+ AllRanksMatch<["input1", "input2"]>,
+ TypeConstraintImplicationOn<"input1", F16, "output", [F16]>,
+ TypeConstraintImplicationOn<"input1", F32, "output", [F32]>,
+ TypeConstraintImplicationOn<"input1", BF16, "output", [BF16]>,
+ TypeConstraintImplicationOn<"input1", AnyInteger, "output", [I32]>]> {
+ let summary = "Multiplication operator.";
+
+ let description = [{
+ Elementwise Multiplication (Hadamard product) of inp...
[truncated]
|
This patch introduces the following element binary operators: * spirv.Tosa.Add * spirv.Tosa.ArithmeticRightShift * spirv.Tosa.BitwiseAnd * spirv.Tosa.BitwiseOr * spirv.Tosa.BitwiseXor * spirv.Tosa.IntDiv * spirv.Tosa.LogicalAnd * spirv.Tosa.LogicalLeftShift * spirv.Tosa.LogicalRightShift * spirv.Tosa.LogicalOr * spirv.Tosa.LogicalXor * spirv.Tosa.Maximum * spirv.Tosa.Minimum * spirv.Tosa.Mul * spirv.Tosa.Pow * spirv.Tosa.Sub * spirv.Tosa.Table Also dialect and serialization round-trip tests have been added. Signed-off-by: Davide Grohmann <davide.grohmann@arm.com> Change-Id: I477dec54212d4201230ba63753c4138fdcb83915
add69f7 to
c4573a5
Compare
|
This one a bit bigger, but many similar and trivial operators. |
IgWod-IMG
left a comment
There was a problem hiding this comment.
Would it be possible to create parent ops for binary and unary operations and then use them to implement the actual new ops? Currently there is a lot of repetition, e.g., getInput1Type. It's a fairly common pattern for other types of ops, e.g.,
+1. Can you also split this into a few smaller PRs (ideally <= 500 kLOC each)? |
This patch introduces the following element binary operators:
Also dialect and serialization round-trip tests have been added.
Change-Id: I477dec54212d4201230ba63753c4138fdcb83915