Python MCP Server for collaborative content structuring. Part of the Teletran1 ecosystem.
Blaster transforms sparse user input into full, engaging articles through 5 specialized MCP tools. It works collaboratively with Claude Desktop or Claude Code - you provide ideas, Blaster provides structure.
| Tool | Purpose |
|---|---|
generate_outline |
Topic → structured article outline with sections and word targets |
expand_section |
Brief description → full content with examples and transitions |
check_completeness |
Flag thin sections, identify missing elements, completeness score |
score_engagement |
Hook/flow/takeaway scoring (0-100) with improvement suggestions |
format_for_platform |
Optimize for LinkedIn, Medium, Dev.to, Twitter, or generic |
npx blaster-mcpThis automatically:
- Detects Python 3.11+
- Creates virtual environment
- Installs dependencies
- Runs the server
npm install -g blaster-mcpAdd to your claude_desktop_config.json:
{
"mcpServers": {
"blaster": {
"command": "npx",
"args": ["blaster-mcp"]
}
}
}Or if globally installed:
{
"mcpServers": {
"blaster": {
"command": "blaster-mcp"
}
}
}Add to your MCP settings:
{
"mcpServers": {
"blaster": {
"command": "npx",
"args": ["blaster-mcp"]
}
}
}# Clone the repository
git clone https://github.com/MatthewSnow2/blaster.git
cd blaster
# Install (runs setup automatically)
npm install
# Or run setup manually
npm run postinstall- Node.js 18+ (for npm tooling)
- Python 3.11+ (automatically detected)
Use generate_outline with:
- topic: "Building Effective AI Agents"
- key_points: ["Architecture patterns", "Error handling", "Testing strategies"]
- audience: "intermediate"
- content_type: "tutorial"
- target_length: 2000
Use expand_section with:
- title: "Error Handling Best Practices"
- description: "Cover retry logic, graceful degradation, and user feedback"
- tone: "professional"
- target_words: 400
Use check_completeness with:
- content: [your full article text]
- outline: [optional - the original outline for comparison]
Use score_engagement with:
- content: [your article text]
- platform: "linkedin"
- title: "10 Lessons from Building AI Agents"
Use format_for_platform with:
- content: [your article text]
- platform: "medium"
- title: "Your Article Title"
- include_hashtags: true
source .venv/bin/activate
pytest tests/ -vpytest tests/ -v --cov=blaster --cov-report=term-missingruff check src/
mypy src/blaster/
├── src/blaster/
│ ├── server.py # MCP server entry point
│ ├── models/schemas.py # Pydantic input/output schemas
│ ├── tools/ # 5 MCP tools
│ ├── errors/ # Error handling
│ └── utils/ # Logging utilities
└── tests/ # 67 tests
Teletran1 (Orchestrator)
├── Perceptor (memory/context)
├── Sky-lynx (meta-learning)
├── Idea Triage (conversation intelligence)
├── Blaster (content structuring) ← THIS
└── Grimlock (task execution)
- Python 3.11+
- MCP SDK - Model Context Protocol
- Pydantic 2.0 - Data validation
- pytest - Testing framework
Built using ralph-loop autonomous development in a single iteration.
MIT
Matthew Snow - Me, Myself Plus AI LLC