Skip to content

Conversation

@gchhablani
Copy link

No description provided.

@maturk
Copy link
Owner

maturk commented Jun 17, 2024

Can you git merge main into your current branch. Also perhaps running some evaluations, e.g. on the provided mushroom dataset and mushroom mesh eval script could be interesting to see the differences between dn-splatter and the proposed new losses here.

@maturk
Copy link
Owner

maturk commented Jun 19, 2024

Tested on the "vr_room" sequence from mushroom dataset:

Metric Surfels DN-Splatter
Acc ↓ 0.0289 0.0302
Comp ↓ 0.0264 0.0258
C-L1 ↓ 0.0276 0.0280
NC ↑ 0.8611 0.8768
F-score ↑ 0.8410 0.8332

Instructions for reproducing:

  • train dn-splatter:
ns-train dn-splatter --max-num-iterations 20000 --pipeline.model.use-depth-loss True --pipeline.model.sensor-depth-lambda 0.2 --pipeline.model.use-depth-smooth-loss True --pipeline.model.use-normal-loss True --pipeline.model.normal-supervision mono mushroom --data [path_to_vr_room]
  • train surfels:
ns-train dn-splatter --max-num-iterations 20000 --pipeline.model.use-depth-loss True --pipeline.model.sensor-depth-lambda 0.2 --pipeline.model.use-depth-smooth-loss True --pipeline.model.use-normal-loss False --pipeline.model.use-nd-loss True --pipeline.model.use-opacity-loss True --pipeline.model.normal-supervision mono mushroom --data [path_to_vr_room]
  • extract meshes with the command:
gs-mesh dn --load-config [path to config] --output-dir [path to output]
  • mushroom mesh evaluation:
python dn_splatter/eval/eval_mesh_mushroom.py --gt-mesh-path path_to/room_datasets/vr_room/ --pred-mesh-path path_to_predicted_mesh/DepthAndNormalMapsPoisson_poisson_mesh.ply 

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants