Skip to content

nirbhay-design/ODE-SSL

Repository files navigation

Leveraging Generative Modelling for Rich Representations

  • We model representation space as continuous dynamical system (NODEL, CARL)
  • We model representation space as distribution (DARe)
  • We leverage EBMs for rich representations (LEMa)
  • The baselines follow from nirbhay-design/RepresentationLearningAlgorithms

Results

Algorithm CIFAR10 (R50) CIFAR100 (R50) CIFAR10 (R18) CIFAR100 (R18)
SimCLR 87.5 57.7 85.9 55.0
Barlow Twins 81.2 47.7 80.3 45.8
BYOL 83.0 47.0 84.8 54.8
SimSiam 76.5 34.5 88.6 62.3
DARe 89.4 62.3 87.3 61.6
NODEL 86.3 52.2 86.0 50.9
CARL 87.4 54.2 84.1 53.4
LEMa 89.7 64.1 87.4 58.4
LEMa (U) 89.5 63.6 87.6 58.6
LEMa (e500) 90.1 64.2 88.0 59.1
DAiLEMa 89.0 60.9 86.5 56.4
DAiLEMa (e500) 89.8 62.3 87.6 57.6
ScAlRe (score) 89.9 63.3 87.6 57.5
ScAlRe (energy) 89.7 63.8 87.2 57.0
SupCon 94.0 74.7 93.5 70.4
Triplet 83.4 76.3 86.0 64.5

Workflows

DARe (Distribution Alignment Regularizer)

dare

NODEL (Neural ODE Based SSL)

nodel

CARL (Continuous Time Adaptive SSL)

odessl

LEMa (Low Energy Manifolds for Representation Learning)

lema

Reproducing the results

python train.py --config configs/nodel.c10.yaml --gpu 0 --model resnet50 --epochs 600 --epochs_lin 100 --save_path nodel.c10.r50.pth
python train.py --config configs/carl.c10.yaml --gpu 0 --model resnet50 --epochs 600 --epochs_lin 100 --save_path carl.c10.r50.pth

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published