Skip to content

A Roadmap for Quickstart: Curated resources for Vital Signs & HCI. Maintained by phish-tech.

License

Notifications You must be signed in to change notification settings

phish-tech/awesome-mmwave-sensing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Awesome mmWave Sensing Banner

awesome-mmwave-sensing

A Roadmap for Quickstart: Curated resources for Vital Signs & HCI. Maintained by phish-tech.

awesome-mmwave-sensing

Awesome License: MIT PRs Welcome

A curated, research-grade index of millimeter-wave (mmWave) radar sensing for vital signs (respiration/heartbeat), HCI & gesture, and indoor tracking/imaging.
Built for engineers and researchers who want credible papers first, plus datasets, tools, and hardware pointers.

Language: English | 简体中文


Table of Contents


🔥 Featured / Recommended

If you only bookmark a few things:

  • Start from Vital Signs fundamentals: mmWave FMCW phase-based extraction + multi-person separation. - For HCI: Soli (CHI/SIGGRAPH lineage) + IMWUT arm gesture systems.
  • For Tracking/Imaging: milliMap (MobiSys) + HuPR (WACV) + IMWUT multi-person tracking.

Broader radar perception lists (non-mmWave-specific but useful for cross-referencing):

↑ Top


📚 Academic Paper Index

Vital Signs

ID Year Title Venue Links
VS-01 2016 Monitoring Vital Signs Using Millimeter Wave ACM MobiHoc DOI: https://doi.org/10.1145/2942358.2942381
VS-02 2017 Vital Sign and Sleep Monitoring Using Millimeter Wave ACM (IMWUT/UbiComp lineage) DOI: https://doi.org/10.1145/3051124
VS-03 2019 Remote Monitoring of Human Vital Signs Using mm-Wave FMCW Radar IEEE Access PDF: https://www.weizmann.ac.il/math/yonina/sites/math.yonina/files/Remote_Monitoring_of_Human_Vital_Signs_Using_mm-Wave_FMCW_Radar.pdf
VS-04 2020 Remote Monitoring of Human Vital Signs Based on 77-GHz mm-Wave FMCW Radar Sensors DOI: https://doi.org/10.3390/s20102999
VS-05 2021 Non-Contact Monitoring of Human Vital Signs Using FMCW Millimeter Wave Radar in the 120 GHz Band Sensors DOI: https://doi.org/10.3390/s21082732
VS-06 2022 High-Precision Vital Signs Monitoring Method Using a FMCW Millimeter-Wave Sensor Sensors DOI: https://doi.org/10.3390/s22197543
VS-07 2022 Your Breath Doesn't Lie: Multi-user Authentication by Sensing Respiration Using mmWave Radar IEEE SECON DOI: https://doi.org/10.1109/SECON55815.2022.9918606
VS-08 2023 Sparsity-Based Multi-Person Non-Contact Vital Signs Monitoring via FMCW Radar IEEE JBHI DOI: https://doi.org/10.1109/JBHI.2023.3255740
VS-09 2023 Pi-ViMo: Physiology-inspired Robust Vital Sign Monitoring using mmWave Radars ACM TIOT DOI: https://doi.org/10.1145/3589347
VS-10 2025 Event-level Identification of Sleep Apnea using FMCW Radar Scientific Reports https://doi.org/10.3390/bioengineering12040399

More (Vital Signs):

↑ Top


HCI / Gesture / Biometrics

ID Year Title Venue Links
HCI-01 2016 Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar ACM TOG DOI: https://doi.org/10.1145/2897824.2925953
HCI-02 2020 Real-time Arm Gesture Recognition in Smart Home Scenarios via Millimeter Wave Sensing (mHomeGes) ACM IMWUT DOI: https://doi.org/10.1145/3432235
HCI-03 2020 MU-ID: Multi-user Identification Through Gaits Using 60 GHz Radios IEEE INFOCOM DOI: https://doi.org/10.1109/INFOCOM41043.2020.9155456
HCI-04 2020 Handwriting Tracking using 60 GHz mmWave Radar IEEE WF-IoT DOI: https://doi.org/10.1109/WF-IoT48130.2020.9221158
HCI-05 2021 Hand Gesture Recognition Using 802.11ad mmWave Sensor in the Mobile Device IEEE WCNC Workshops DOI: https://doi.org/10.1109/WCNCW49093.2021.9419978
HCI-06 2021 mmWrite: Passive Handwriting Tracking Using a Single Millimeter-Wave Radio IEEE IoT-J DOI: https://doi.org/10.1109/JIOT.2021.3066507
HCI-07 2021 DI-Gesture: A Fine-grained Dataset and Benchmark for Doppler Imaging-based Gesture Recognition arXiv https://arxiv.org/abs/2101.05214
HCI-08 2022 mm4Arm: Leveraging Properties of mmWave Signals for 3D Arm Motion Tracking ACM POMACS DOI: https://doi.org/10.1145/3570613
HCI-09 2022 GaitCube: Deep Data Cube Learning for Human Recognition With Millimeter-Wave Radio IEEE IoT-J DOI: https://doi.org/10.1109/JIOT.2021.3083934
HCI-10 2024 mmSign: mmWave-based Few-Shot Online Handwritten Signature Verification ACM TOSN DOI: https://doi.org/10.1145/3605945
HCI-11 2025 mmPencil: Toward Writing-Style-Independent In-Air Handwriting Recognition via mmWave Radar and Large Vision-Language Model ACM IMWUT DOI: https://doi.org/10.1145/3749504

↑ Top


Imaging / Tracking / Mapping

ID Year Title Venue Links
TRK-01 2018 Indoor Localization Using Commercial Off-The-Shelf 60 GHz Access Points IEEE INFOCOM DOI: https://doi.org/10.1145/INFOCOM.2018.8486232
TRK-02 2019 RadHAR: Human Activity Recognition from Point Clouds Generated through a Millimeter-wave Radar ACM mmNets (MobiCom WS) DOI: https://doi.org/10.1145/3349624.3356768
TRK-03 2020 milliMap: Robust Indoor Mapping with Low-cost mmWave Radar ACM MobiSys DOI: https://doi.org/10.1145/3386901.3388945
TRK-04 2022 mTransSee: Enabling Real-time mmWave Sparse Imaging through Non-RF Occluders ACM IMWUT DOI: https://doi.org/10.1145/3517231
TRK-05 2023 HuPR: A Benchmark for Human Pose Estimation Using Millimeter Wave Radar IEEE WACV PDF: https://openaccess.thecvf.com/content/WACV2023/papers/Lee_HuPR_A_Benchmark_for_Human_Pose_Estimation_Using_Millimeter_Wave_WACV_2023_paper.pdf
TRK-06 2023 Environment-aware Multi-person Tracking in Indoor Environments with mmWave Radars ACM IMWUT DOI: https://doi.org/10.1145/3610902
TRK-07 2023 MM-Fi: Multi-Modal Non-Intrusive 4D Human Dataset for Wireless Human Sensing NeurIPS Datasets & Benchmarks / arXiv Project: https://ntu-aiot-lab.github.io/mm-fi
TRK-08 2024 PmTrack: Enabling Personalized mmWave-based Human Tracking in Commodity Smart Home ACM IMWUT DOI: https://doi.org/10.1145/3631433
TRK-09 2024 Waffle: Waterproof mmWave-based Sensing Inside Bathrooms with Running Water ACM IMWUT DOI: https://doi.org/10.1145/3631458
TRK-10 2024 Fast Human Action Recognition via mmWave Radar Point Clouds ACM (conference proceedings) DOI: https://doi.org/10.1145/3627673.3679787
TRK-11 2025 DragonFly: Drone-based 3D Localization of Backscatter Tags Using mmWave Radar ACM MobiCom DOI: https://doi.org/10.1145/3680207.3765269

↑ Top


🛠 Open Source Tools

↑ Top


💾 Datasets

↑ Top


🔌 Hardware

↑ Top


🎓 Zero to Hero

New to mmWave radar? Follow this learning path to go from concept to implementation:

  1. Theory (The Basics) 📖 Read the classic TI FMCW Radar Basics whitepaper. Understand Range-FFT, Doppler-FFT, and Angle Estimation.
  2. Hands-on (The Quickstart) 🛠️ Run the mmWave-Heartbeat-Toolbox. It handles the complex data parsing and gives you a working vital signs baseline.
  3. Deep Dive (The Academic Pillar) 🎓 Read the foundational paper VS-01 (MobiHoc '16). It defined the phase-based sensing pipeline used by most researchers today.
  4. Expansion (The Community) 🧩 Try replicating examples from OpenRadar to explore detection and tracking.

↑ Top


👥 Community & Contributing

Contributions are welcome and appreciated.

How to add a paper/tool/dataset

  1. Keep scope: mmWave radar sensing (vital signs / HCI / tracking & imaging).
  2. Prefer peer-reviewed venues (ACM/IEEE/Elsevier/Nature family) and stable links (DOI/project page).
  3. Follow the indexing format: add a new ID and a one-line citation.

Suggested repo files

  • CONTRIBUTING.md — contribution rules + formatting
  • CODE_OF_CONDUCT.md — community policy
  • CITATION.cff — how to cite this list

↑ Top


🧩 Phish-tech Present

The following items are presented by the author of this project.

↑ Top

About

A Roadmap for Quickstart: Curated resources for Vital Signs & HCI. Maintained by phish-tech.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published