Skip to content

pkparthk/AuraHR---The-Next-Generation-AI-Powered-HRMS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚀 AuraHR - The Next-Generation AI-Powered HRMS

AuraHR Logo

FastAPI React MongoDB ChromaDB HuggingFace

Enterprise-grade Human Resource Management System powered by cutting-edge AI technologies

📋 Table of Contents

🎬 Demo Video

A short product demo video is available to help you quickly understand AuraHR's core features (recruitment, AI screening, performance dashboards, and development plans).

📸 Demo Screenshots

👩‍💼 Admin Dashboard

Admin Dashboard - System Overview

Comprehensive admin dashboard with system-wide analytics, user management, and KPI tracking

👩‍🎯 Recruiter Dashboard

Recruiter Dashboard

AI-powered recruitment dashboard with candidate screening and matching insights

👨‍💼 Manager Dashboard

Manager Dashboard - Team Analytics

Manager dashboard showing team performance metrics and department insights

👩‍🎯 Recruiter Interface

Job Management

Jobs Page for Recruiter

Recruiter job management interface with posting creation and candidate pipeline

AI Screening Interface

AI Screening Interface

Conversational AI screening interface for automated candidate interviews

📊 Admin Interface

Recruitment Process (Admin View)

Recruitment Page for Admin

Admin oversight of recruitment processes with system-wide metrics

Employee Management (Admin View)

Employee Page for Admin

Admin view of employee management with detailed profiles and analytics

📊 Manager Interface

Team Analytics Dashboard

Team Analytics Dashboard

Advanced team analytics with performance trends and skill gap analysis

Team Development

Team Development

AI-powered learning and development planning interface

Performance Management

Performance Management

Employee performance tracking with AI-generated insights and recommendations

👩‍💻 Employee Experience Interface

Employee Dashboard

Employee Dashboard

Personal employee dashboard with performance metrics and career goals

Document Management

Employee Documents

Employee document management and file handling interface

🌟 Overview

AuraHR is a comprehensive, production-ready Human Resource Management System that leverages cutting-edge AI technologies to automate recruitment processes, foster personalized employee growth, and provide data-driven insights for modern enterprises.

🎯 Key Benefits

  • 🤖 AI-Powered Recruitment: Automated resume screening with 90%+ accuracy using semantic matching
  • 📊 Smart Analytics: Real-time performance insights and predictive analytics
  • 🎓 Personalized L&D: AI-generated learning and development plans for each employee
  • 💬 Conversational AI: Interactive candidate screening through natural language processing
  • 🔍 Vector Search: Advanced candidate matching using ChromaDB embeddings
  • 🚀 Production Ready: Enterprise-grade security, scalability, and performance

✨ Key Features

🔍 AI-Powered Recruitment

  • Smart Resume Screening: Automatic PDF/DOCX parsing with NLP-based entity extraction
  • Semantic Candidate Matching: HuggingFace Sentence Transformers for precise job-candidate matching
  • AI Interview Screening: Conversational AI with contextual follow-up questions
  • Automated Ranking: ML-powered candidate scoring and recommendation engine

👥 Employee Management

  • 360° Performance Tracking: Comprehensive performance metrics and analytics
  • Skills Gap Analysis: AI-driven identification of skill gaps and improvement areas
  • Career Path Planning: Personalized development roadmaps using Google Gemini AI
  • Real-time Insights: Dynamic dashboards for HR managers and employees

🔐 Enterprise Security

  • JWT Authentication: Secure token-based authentication system
  • Role-Based Access: Granular permissions for Admin, Manager, Recruiter, and Employee roles
  • Data Encryption: bcrypt password hashing and secure data transmission
  • Audit Trails: Complete activity logging for compliance and security

📊 Advanced Analytics

  • Performance Dashboards: Real-time KPIs and metrics visualization
  • Predictive Analytics: Turnover prediction and retention insights
  • Team Performance: Department-wide and team-level performance tracking
  • Business Intelligence: Data-driven decision making tools

🏗️ Architecture

System Overview

┌─────────────────────────────────────────────────────────────────┐
│                        AuraHR Architecture                      │
├─────────────────────────────────────────────────────────────────┤
│  Frontend (React + Vite)                                        │
│  ├── UI Components (Material-UI + Radix UI)                     │
│  ├── State Management (Zustand)                                 │
│  ├── API Integration (React Query)                              │
│  └── Routing (React Router)                                     │
├─────────────────────────────────────────────────────────────────┤
│  Backend (FastAPI)                                              │
│  ├── REST API Endpoints                                         │
│  ├── Authentication & Authorization                             │
│  ├── Business Logic Services                                    │
│  └── AI Integration Layer                                       │
├─────────────────────────────────────────────────────────────────┤
│  AI Services                                                    │
│  ├── HuggingFace Transformers (Resume Analysis)                 │
│  ├── Sentence Transformers (Semantic Matching)                  │
│  ├── Google Gemini (Conversational AI)                          │
│  ├── spaCy (Entity Extraction)                                  │
│  └── ChromaDB (Vector Database)                                 │
├─────────────────────────────────────────────────────────────────┤
│  Data Layer                                                     │
│  ├── MongoDB (Primary Database)                                 │
│  ├── ChromaDB (Vector Embeddings)                               │
│  └── File Storage (Resume Upload)                               │
└─────────────────────────────────────────────────────────────────┘

AI Pipeline

Resume Upload → Text Extraction → Entity Recognition →
Embedding Generation → Similarity Calculation →
Candidate Ranking → AI Screening → Interview Summary

🚀 Quick Start

Prerequisites

  • Node.js 18+ and npm
  • Python 3.10+
  • MongoDB 6.0+ (Atlas or local)
  • Git

1. Clone Repository

git clone https://github.com/pkparthk/AuraHR---The-Next-Generation-AI-Powered-HRMS.git
cd "AuraHR - The Next-Generation AI-Powered HRMS"

2. Backend Setup

cd backend

# Create virtual environment
python -m venv venv
venv\Scripts\activate  # Windows
# source venv/bin/activate  # Linux/Mac

# Install dependencies
pip install -r requirements.txt

# Setup environment variables
copy .env.example .env
# Edit .env with your configuration

# Start backend server
uvicorn app.main:app --reload

3. Frontend Setup

cd frontend

# Install dependencies
npm install

# Start development server
npm run dev

4. Access Application

🔑 Default Test Credentials

Admin:     admin@example.com / admin123
Manager:   manager@example.com / manager123
Recruiter: recruiter@example.com / recruiter123
Employee:  employee@example.com / employee123

💻 Tech Stack

Frontend

  • Framework: React 18 with TypeScript
  • Build Tool: Vite (Lightning-fast builds)
  • UI Framework: Radix UI + Tailwind CSS
  • State Management: Zustand
  • HTTP Client: React Query + Axios
  • Form Handling: React Hook Form with Zod validation
  • Icons: Lucide React

Backend

  • Framework: FastAPI (High-performance Python API)
  • Database: MongoDB with Motor (Async driver)
  • Authentication: JWT with passlib + bcrypt
  • Validation: Pydantic v2 with custom validators
  • File Processing: PyPDF2, python-docx, Pillow
  • API Documentation: OpenAPI 3.0 (Swagger)

AI/ML Stack

  • Embedding Model: HuggingFace Sentence Transformers
  • Vector Database: ChromaDB for similarity search
  • NLP Processing: spaCy for entity extraction
  • Conversational AI: Google Gemini API
  • ML Framework: scikit-learn for classification
  • Caching: In-memory + file-based embedding cache

Infrastructure

  • Containerization: Docker with multi-stage builds
  • Development: Hot reload, auto-restart
  • Production: Gunicorn + Uvicorn workers
  • Monitoring: Structured logging with Python logging

📖 API Documentation

Core Endpoints

Authentication

POST /api/v1/auth/login          # User login
POST /api/v1/auth/register       # User registration
POST /api/v1/auth/refresh        # Token refresh

Jobs & Recruitment

GET    /api/v1/jobs                    # List all jobs
POST   /api/v1/jobs                    # Create new job
POST   /api/v1/jobs/{id}/upload-resume # Upload candidate resume
GET    /api/v1/jobs/{id}/candidates    # Get job candidates (AI-ranked)

AI-Powered Features

GET  /api/v1/candidates/{id}/ai-score       # AI resume scoring
POST /api/v1/candidates/{id}/start-screening # AI interview screening
GET  /api/v1/employees/{id}/development-plan # AI learning plan

Employee Management

GET    /api/v1/employees           # List employees
POST   /api/v1/employees           # Create employee
PUT    /api/v1/employees/{id}      # Update employee
DELETE /api/v1/employees/{id}      # Delete employee

Interactive API Documentation

Visit http://localhost:8000/docs for complete interactive API documentation with request/response examples.

🔧 Configuration

Environment Variables

Required Settings

# Database
DATABASE_URL=your-mongodb-url

# Security
SECRET_KEY=your-super-secret-jwt-key-here
ALGORITHM=HS256
ACCESS_TOKEN_EXPIRE_MINUTES=30

# AI Configuration
GOOGLE_API_KEY=your-gemini-api-key-here
EMBEDDING_MODEL_NAME=sentence-transformers/msmarco-distilbert-base-v4
SPACY_MODEL_NAME=en_core_web_sm

Optional Settings

# AI Features (Enable/Disable)
INIT_AI_ON_STARTUP=true
ENABLE_SPACY_PROCESSING=true
ENABLE_GEMINI_FALLBACK=false
ENABLE_ML_CLASSIFIER=true
ENABLE_ENTITY_EXTRACTION=true

# Performance
CHROMA_PERSIST_DIRECTORY=./chroma_db
MAX_FILE_SIZE=10485760
UPLOAD_DIR=./uploads

# Development
DEBUG=false
LOG_LEVEL=INFO
ENABLE_DOCS=true

🚢 Deployment

Production Deployment Options

1. Render + Vercel (Recommended)

  • Backend: Deploy to Render using render.yaml
  • Frontend: Deploy to Vercel using vercel.json
  • Database: MongoDB Atlas (Free tier available)

2. Docker Containerization

# Build and run with Docker Compose
docker-compose up --build

# Production deployment
docker-compose -f docker-compose.prod.yml up -d

🤝 Contributing

We welcome contributions! Please see our Contributing Guidelines for details.

Development Workflow

  1. Fork the repository
  2. Create feature branch (git checkout -b feature/amazing-feature)
  3. Commit changes (git commit -m 'Add amazing feature')
  4. Push to branch (git push origin feature/amazing-feature)
  5. Open Pull Request

📊 Project Stats

  • ✅ Production Ready: Enterprise-grade security and performance
  • 🤖 AI-First: 5+ AI models integrated for intelligent automation
  • 📱 Responsive: Works seamlessly on desktop, tablet, and mobile
  • 🔒 Secure: JWT authentication, role-based access, encrypted data
  • ⚡ Fast: Optimized queries, caching, and lazy loading
  • 📈 Scalable: Microservices-ready architecture

⭐ Star this repo if you find it helpful!

Built with ❤️ by Parth Kothari