- 🌟 Overview
- ✨ Key Features
- 🏗️ Architecture
- 🚀 Quick Start
- 💻 Tech Stack
- 📖 API Documentation
- 🔧 Configuration
- 🚢 Deployment
- 🤝 Contributing
A short product demo video is available to help you quickly understand AuraHR's core features (recruitment, AI screening, performance dashboards, and development plans).
AuraHR Demo Video.mp4:- View Demo Video
- Hosted demo (Google Drive): https://drive.google.com/file/d/1D5WMNyfPaUsWGriTvKjdA-IWPIJPngoh/view?usp=sharing
AuraHR is a comprehensive, production-ready Human Resource Management System that leverages cutting-edge AI technologies to automate recruitment processes, foster personalized employee growth, and provide data-driven insights for modern enterprises.
- 🤖 AI-Powered Recruitment: Automated resume screening with 90%+ accuracy using semantic matching
- 📊 Smart Analytics: Real-time performance insights and predictive analytics
- 🎓 Personalized L&D: AI-generated learning and development plans for each employee
- 💬 Conversational AI: Interactive candidate screening through natural language processing
- 🔍 Vector Search: Advanced candidate matching using ChromaDB embeddings
- 🚀 Production Ready: Enterprise-grade security, scalability, and performance
- Smart Resume Screening: Automatic PDF/DOCX parsing with NLP-based entity extraction
- Semantic Candidate Matching: HuggingFace Sentence Transformers for precise job-candidate matching
- AI Interview Screening: Conversational AI with contextual follow-up questions
- Automated Ranking: ML-powered candidate scoring and recommendation engine
- 360° Performance Tracking: Comprehensive performance metrics and analytics
- Skills Gap Analysis: AI-driven identification of skill gaps and improvement areas
- Career Path Planning: Personalized development roadmaps using Google Gemini AI
- Real-time Insights: Dynamic dashboards for HR managers and employees
- JWT Authentication: Secure token-based authentication system
- Role-Based Access: Granular permissions for Admin, Manager, Recruiter, and Employee roles
- Data Encryption: bcrypt password hashing and secure data transmission
- Audit Trails: Complete activity logging for compliance and security
- Performance Dashboards: Real-time KPIs and metrics visualization
- Predictive Analytics: Turnover prediction and retention insights
- Team Performance: Department-wide and team-level performance tracking
- Business Intelligence: Data-driven decision making tools
┌─────────────────────────────────────────────────────────────────┐
│ AuraHR Architecture │
├─────────────────────────────────────────────────────────────────┤
│ Frontend (React + Vite) │
│ ├── UI Components (Material-UI + Radix UI) │
│ ├── State Management (Zustand) │
│ ├── API Integration (React Query) │
│ └── Routing (React Router) │
├─────────────────────────────────────────────────────────────────┤
│ Backend (FastAPI) │
│ ├── REST API Endpoints │
│ ├── Authentication & Authorization │
│ ├── Business Logic Services │
│ └── AI Integration Layer │
├─────────────────────────────────────────────────────────────────┤
│ AI Services │
│ ├── HuggingFace Transformers (Resume Analysis) │
│ ├── Sentence Transformers (Semantic Matching) │
│ ├── Google Gemini (Conversational AI) │
│ ├── spaCy (Entity Extraction) │
│ └── ChromaDB (Vector Database) │
├─────────────────────────────────────────────────────────────────┤
│ Data Layer │
│ ├── MongoDB (Primary Database) │
│ ├── ChromaDB (Vector Embeddings) │
│ └── File Storage (Resume Upload) │
└─────────────────────────────────────────────────────────────────┘
Resume Upload → Text Extraction → Entity Recognition →
Embedding Generation → Similarity Calculation →
Candidate Ranking → AI Screening → Interview Summary
- Node.js 18+ and npm
- Python 3.10+
- MongoDB 6.0+ (Atlas or local)
- Git
git clone https://github.com/pkparthk/AuraHR---The-Next-Generation-AI-Powered-HRMS.git
cd "AuraHR - The Next-Generation AI-Powered HRMS"cd backend
# Create virtual environment
python -m venv venv
venv\Scripts\activate # Windows
# source venv/bin/activate # Linux/Mac
# Install dependencies
pip install -r requirements.txt
# Setup environment variables
copy .env.example .env
# Edit .env with your configuration
# Start backend server
uvicorn app.main:app --reloadcd frontend
# Install dependencies
npm install
# Start development server
npm run dev- Frontend: http://localhost:3000
- Backend API: http://localhost:8000
- API Documentation: http://localhost:8000/docs
Admin: admin@example.com / admin123
Manager: manager@example.com / manager123
Recruiter: recruiter@example.com / recruiter123
Employee: employee@example.com / employee123
- Framework: React 18 with TypeScript
- Build Tool: Vite (Lightning-fast builds)
- UI Framework: Radix UI + Tailwind CSS
- State Management: Zustand
- HTTP Client: React Query + Axios
- Form Handling: React Hook Form with Zod validation
- Icons: Lucide React
- Framework: FastAPI (High-performance Python API)
- Database: MongoDB with Motor (Async driver)
- Authentication: JWT with passlib + bcrypt
- Validation: Pydantic v2 with custom validators
- File Processing: PyPDF2, python-docx, Pillow
- API Documentation: OpenAPI 3.0 (Swagger)
- Embedding Model: HuggingFace Sentence Transformers
- Vector Database: ChromaDB for similarity search
- NLP Processing: spaCy for entity extraction
- Conversational AI: Google Gemini API
- ML Framework: scikit-learn for classification
- Caching: In-memory + file-based embedding cache
- Containerization: Docker with multi-stage builds
- Development: Hot reload, auto-restart
- Production: Gunicorn + Uvicorn workers
- Monitoring: Structured logging with Python logging
POST /api/v1/auth/login # User login
POST /api/v1/auth/register # User registration
POST /api/v1/auth/refresh # Token refreshGET /api/v1/jobs # List all jobs
POST /api/v1/jobs # Create new job
POST /api/v1/jobs/{id}/upload-resume # Upload candidate resume
GET /api/v1/jobs/{id}/candidates # Get job candidates (AI-ranked)GET /api/v1/candidates/{id}/ai-score # AI resume scoring
POST /api/v1/candidates/{id}/start-screening # AI interview screening
GET /api/v1/employees/{id}/development-plan # AI learning planGET /api/v1/employees # List employees
POST /api/v1/employees # Create employee
PUT /api/v1/employees/{id} # Update employee
DELETE /api/v1/employees/{id} # Delete employeeVisit http://localhost:8000/docs for complete interactive API documentation with request/response examples.
# Database
DATABASE_URL=your-mongodb-url
# Security
SECRET_KEY=your-super-secret-jwt-key-here
ALGORITHM=HS256
ACCESS_TOKEN_EXPIRE_MINUTES=30
# AI Configuration
GOOGLE_API_KEY=your-gemini-api-key-here
EMBEDDING_MODEL_NAME=sentence-transformers/msmarco-distilbert-base-v4
SPACY_MODEL_NAME=en_core_web_sm# AI Features (Enable/Disable)
INIT_AI_ON_STARTUP=true
ENABLE_SPACY_PROCESSING=true
ENABLE_GEMINI_FALLBACK=false
ENABLE_ML_CLASSIFIER=true
ENABLE_ENTITY_EXTRACTION=true
# Performance
CHROMA_PERSIST_DIRECTORY=./chroma_db
MAX_FILE_SIZE=10485760
UPLOAD_DIR=./uploads
# Development
DEBUG=false
LOG_LEVEL=INFO
ENABLE_DOCS=true- Backend: Deploy to Render using
render.yaml - Frontend: Deploy to Vercel using
vercel.json - Database: MongoDB Atlas (Free tier available)
# Build and run with Docker Compose
docker-compose up --build
# Production deployment
docker-compose -f docker-compose.prod.yml up -dWe welcome contributions! Please see our Contributing Guidelines for details.
- Fork the repository
- Create feature branch (
git checkout -b feature/amazing-feature) - Commit changes (
git commit -m 'Add amazing feature') - Push to branch (
git push origin feature/amazing-feature) - Open Pull Request
- ✅ Production Ready: Enterprise-grade security and performance
- 🤖 AI-First: 5+ AI models integrated for intelligent automation
- 📱 Responsive: Works seamlessly on desktop, tablet, and mobile
- 🔒 Secure: JWT authentication, role-based access, encrypted data
- ⚡ Fast: Optimized queries, caching, and lazy loading
- 📈 Scalable: Microservices-ready architecture
⭐ Star this repo if you find it helpful!
Built with ❤️ by Parth Kothari











