Skip to content

Abstract representation of data for machine vision

License

Notifications You must be signed in to change notification settings

ps-nithin/pyrebel

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

419 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pyrebel

A pure python library that implements abstraction of data.

Installation

From PyPI

python3 -m pip install --upgrade pyrebel

From source

git clone https://github.com/ps-nithin/pyrebel
cd pyrebel
python3 -m pip install .

Running demo programs

Demo programs are found in 'demo/' directory.
cd demo/

1. Image abstraction demo

Usage:
python3 pyrebel_main.py --input <filename.png>

Optional arguments
--abs_threshold <value> Selects the threshold of abstraction. (Defaults to 5)

For example,
python3 pyrebel_main.py --input images/abc.png --abs_threshold 10

The output is written to 'output.png'

2. Edge detection demo

This is a demo of edge detection achieved using data abstraction.
Usage:
python3 pyrebel_main_edge.py --input <filename>

For example,
python3 pyrebel_main_edge.py --input images/wildlife.jpg

The output is written to 'output.png'. Below is a sample input image,


Below is the output image,



See how edge detection works here

3. 2D sketch demo

This is a demo of 2D sketch formation using data abstraction.
Usage:
python3 pyrebel_main_vision.py --input <filename>

Optional arguments for tweaking the result,

  1. --edge_threshold <value> Selects the threshold of edge detection.(Defaults to 5)
  2. --abs_threshold <value> Selects the threshold of output abstraction. (Defaults to 10)
  3. --bound_threshold <value> Selects the threshold of boundary size. (Defaults to 100)

For example,
python3 pyrebel_main_vision.py --input images/lotus.jpg

Below is a sample input image,


Below is the output image,

4. Abstract painting

This is a demo of abstract painting using data abstraction. The output of edge detection is painted to obtain the desired output.
Usage:
python3 pyrebel_main_paint.py --input <filename>

Optional arguments for tweaking the result,

  1. --edge_threshold <value> Selects the threshold of edge detection. (Defaults to 10).
  2. --paint_threshold <value> Selects the threshold of painting. (Defaults to 5).
  3. --block_threshold <value> Selects the threshold of block size. (Defaults to 20).

    For example,
    Running python3 pyrebel_main_paint.py --input images/elephant.jpg --edge_threshold 10 --block_threshold 50 --paint_threshold 1

    Below is the sample input image,


    Below is the output image,

5. Pattern recognition demo

This is a demo of pattern recognition achieved using data abstraction.

  1. Learning
    Usage: python3 pyrebel_main_learn.py --learn /path/to/image/directory/
    For example running python3 pyrebel_main_learn.py --learn images/train-hand/ learns all the images in the directory and links the filename with the signatures.

  2. Recognition
    Usage: python3 pyrebel_main_learn.py --recognize <filename>
    For example running python3 pyrebel_main_learn.py --recognize images/recognize.png displays the symbols recognized in the file 'images/recognize.png'.

To reset the knowledge base just delete file 'know_base.pkl' in the current working directory. The program expects a single pattern in the input image. Otherwise, a pattern has to be selected by changing variable 'blob_index' accordingly. For learning / recognizing multiple patterns, use demo script pyrebel_main_learn_multiple.py instead of pyrebel_main_learn.py.

See how the program learns and recognizes patterns here

Docs here

Read more here

Let the data shine!

Releases

No releases published

Sponsor this project

 

Packages

No packages published

Languages