Author: Marta Reinhardt
Version: 1.0.0
License: MIT
Language: Python 3.10+
The G-Force Capsule is an advanced multi-physics simulation environment designed to test and validate an autonomous cryogenic capsule operating under high acceleration (up to 10g).
It integrates:
- Thermal modeling
- Structural stress analysis
- Life support environmental control
- Adaptive AI regulation
- Automatic data logging
g-force-capsule/ ├── src/ │ ├── init.py │ ├── thermal_sim.py │ ├── stress_sim.py │ ├── life_support_sim.py │ ├── ai_control.py │ └── data_logger.py │ ├── main.py ├── requirements.txt ├── simulation_log.md └── README.md
git clone https://gitlab.com/martasreinhardt/g-force-capsule.git
cd g-force-capsule
pip install -r requirements.txt
---
▶️ Usage
To execute the full simulation sequence:
python main.py
This will:
1. Run all simulation modules in order.
2. Collect and log results into simulation_log.md.
3. Display real-time console output for progress tracking.
---
🧮 Modules Description
thermal_sim.py
Simulates heat transfer, insulation, and internal temperature gradients through multiple protective layers.
Output metrics:
heat_flux (W/m²)
delta_T (°C)
---
stress_sim.py
Analyzes structural deformation and mechanical stress under acceleration up to 10g.
Output metrics:
peak_stress (MPa)
max_deflection (mm)
---
life_support_sim.py
Models oxygen and CO₂ exchange, pressure stability, and temperature regulation over multi-hour cycles.
Output metrics:
O2_final (m³)
CO2_final (m³)
temperature_drift (°C)
---
ai_control.py
Implements adaptive regulation for homeostasis using control algorithms (PID-like or neural approximation).
Output metrics:
stability_index (0–1 scale)
system_status (nominal / alert)
---
data_logger.py
Automatically generates and appends results to simulation_log.md after every execution.
Capabilities:
Timestamped Markdown logs
Modular metric tables
Easy Git diff comparison
---
📊 Example Output (from simulation_log.md)
# 🧪 Simulation Run — 2025-11-11 12:00:00 UTC
## Module: `thermal_sim`
| Metric | Value |
|---------|--------|
| heat_flux | 134.5 W/m² |
| delta_T | 22.4 °C |
## Module: `stress_sim`
| Metric | Value |
|---------|--------|
| peak_stress | 412 MPa |
| max_deflection | 0.35 mm |
## Module: `life_support_sim`
| Metric | Value |
|---------|--------|
| O2_final | 0.208 m³ |
| CO2_final | 0.00051 m³ |
## Module: `ai_control`
| Metric | Value |
|---------|--------|
| stability_index | 0.997 |
| system_status | nominal |
✅ **Simulation cycle completed successfully.**
---
🧠 Future Extensions
neural_agent.py → AI learning from real-time feedback
dashboard_ui.py → real-time visualization in 3D
data_visualizer.py → automated result graphs
hardware_interface.py → integration with onboard sensors
---
📜 License
This project is licensed under the MIT License.
See the LICENSE file for details.
---
🌐 Author
Marta Reinhardt
AI Systems Developer — Simulation & Adaptive Design