YoloView - YOLOv5 / YOLOv8 / YOLOv9 / YOLOv10 / YOLOv11 / YOLOv12 / YOLOv26 / RTDETR / SAM / MobileSAM / PP-OCR GUI based on Pyside6
YoloView is a user interface (GUI) application that supports Ultralytics-based YOLOv5 YOLOv8 YOLOv9 YOLOv10 YOLOv11 YOLOv12 YOLOv26 RT-DETR SAM MobileSAM FastSAM PP-OCR models.
English | 한국어
- Add
YOLOv8YOLOv9YOLOv10YOLO11YOLO12YOLO26RT-DETRSAMMobileSAMFastSAMPP-OCRModel - Support Instance Segmentation (
YOLOv5YOLOv8YOLOv11SAMMobileSAMFastSAM) - Support Pose Estimation (
YOLOv8 ~ 26) - Support Oriented Bounding Boxes (
YOLOv8 ~ 26) - Support Http Protocol in
RTSPFunction (SingleMode ) - Add Model Comparison Mode(VS Mode)
- Support Dragging File Input
-
YOLO11 ~ 26has additional features (obb,pose,deteced,segment,track) - Tracking & Counting (
YOLOv8 ~ 12) - Added bbox and segment category filter functions (under model selection function)
- Added bbox and segment label verification function(
bbox-valid.pt&seg-valid.pt) - Added subfolder navigation feature (only when browsing folders)
- Improved and enhanced statistics
- Save Labal
- Image Navigation Controls (<<,< ,>, >>)
- Curating for Accuracy (Building a Balanced Computer Vision Dataset)
- Classes Filter (Integrating the right-hand class filter function)
- Add a message relay server
Choose Image / Video / Webcam / Folder (Batch) / IPCam in the menu bar on the left to detect objects.
When the program is running to detect targets, you can change models / hyper Parameters
- Support changing model in YOLOv5 / YOLOv8 / YOLOv9 / YOLOv10 / YOLOv11 / RTDETR / YOLOv5-seg / YOLOv8-seg YOLOv11-seg / YOLOv8-pose / YOLOv11-pose / YOLOv8-obb / YOLOv11-obb / SAM / MobileSAM / FastSAM dynamically
- Support changing
IOU/Confidence/Delay time/line thicknessdynamically
Our program will automatically detect pt files including YOLOv5 Models / YOLOv8 Models / YOLOv9 Models / YOLOv10 Models that were previously added to the ptfiles folder.
If you need add the new pt file, please click Import Model button in Settings box to select your pt file. Then our program will put it into ptfiles folder.
Notice :
- All
ptfiles are named includingyolov5/yolov8/yolov9/yolov10/yolo11/yolo12/yolo26/rtdetr/sam/samv2/mobilesam/fastsam. (e.g.yolov8-test.pt) - If it is a
ptfile of segmentation mode, please name it includingyolov5n-seg/yolov8s-seg. (e.g.yolov8n-seg-test.pt) - If it is a
ptfile of pose estimation mode, please name it includingyolov8n-pose. (e.g.yolov8n-pose-test.pt) - If it is a
ptfile of oriented bounding box mode, please name it includingyolov8n-obb. (e.g.yolov8n-obb-test.pt)
- After startup, the program will automatically loading the last configure parameters.
- After closedown, the program will save the changed configure parameters.
If you need Save results, please click Save Mode before detection. Then you can save your detection results in selected path.
From YoloView v3.5,our work supports both Object Detection , Instance Segmentation, Pose Estimation and Oriented Bounding Box. Meanwhile, it also supports task switching between different versions,such as switching from YOLOv5 Object Detection task to YOLOv8 Instance Segmentation task.
7. Support Model Comparison among Object Detection, Instance Segmentation, Pose Estimation and Oriented Bounding Box
From YoloView v3.5,our work supports compare model performance among Object Detection, Instance Segmentation, Pose Estimation and Oriented Bounding Box.
OS : Windows 11
CPU : Intel(R) Core(TM) i7-10750H CPU @2.60GHz 2.59 GHz
GPU : NVIDIA GeForce GTX 1660Ti 6GBcreate a virtual environment equipped with python version 3.11, then activate environment.
conda create -n yoloview python>=3.12
conda activate yoloviewWindows: uv pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128
Linux: uv pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128Change other pytorch version in
Switch the path to the location of the program
cd {the location of the program}Install dependency package of program
uv syncultralytics root download
Run library_update.bat
If the resource has changed, you must run the command below.
pyside6-rcc {YOLOSHOW_New_Path}\ui\YOLOSHOWUI.qrc -o {YOLOSHOW_New_Path}\ui\YOLOSHOWUI_rc.pyCopy all font files *.ttf in fonts folder into C:\Windows\Fonts
mkdir -p ~/.local/share/fonts
sudo cp fonts/Shojumaru-Regular.ttf ~/.local/share/fonts/
sudo fc-cache -fvThe MacBook is so expensive that I cannot afford it, please install .ttf by yourself. 😂
python main.pyultralytics/ultralytics#1158 ultralytics/ultralytics#8772
pyinstaller --onefile --windowed --icon="images/jellybomb.ico" ^
--collect-data=pyiqa ^
--add-data="ultralytics/cfg/default.yaml;ultralytics/cfg" ^
--add-data="ultralytics/cfg/solutions/default.yaml;ultralytics/cfg/solutions" ^
--add-data="ui/YOLOSHOWUI_rc.py;ui" ^
--add-data="fonts;fonts" ^
--add-data="images;images" ^
--add-data="images/newsize;images/newsize" ^
--add-data="models;models" ^
--add-data="ui;ui" ^
--add-data="utils;utils" ^
--add-data="yolocode;yolocode" ^
--add-data="yoloshow;yoloshow" ^
main.pyNext, once built, a main.exe will be created in the dist folder. Go to the top and copy the 'config', 'ptfiles' 'images' folders and paste them under the dist folder.
└─dist (Parent Folder)
├─ config (folder)
├─ ptfiles (folder)
├─ images (folder)
└─ main.exe
Enjoy YOLO!!
