Skip to content

Commit 2d23b9e

Browse files
committed
Merge branch 'develop' of github.com:srele96/sk-experiments into feat/algorithms
2 parents 0f67901 + 175b428 commit 2d23b9e

File tree

4 files changed

+276
-0
lines changed

4 files changed

+276
-0
lines changed

math/13.02.2024.md

Lines changed: 44 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,44 @@
1+
# 13.02.2024
2+
3+
Prove the following identities:
4+
5+
```math
6+
\sin^4 \alpha + \cos^2 \alpha + \sin^2 \alpha \cos^2 \alpha = 1
7+
```
8+
9+
As I was looking at the expression I realized if I split out the $\sin^4 \alpha$ to $\sin^2 \alpha \sin^2 \alpha$ and then looked at the remainder of an expression and realized:
10+
11+
```math
12+
\begin{align*}
13+
14+
\sin^2 \alpha \sin^2 \alpha + \sin^2 \alpha \cos^2 \alpha + \cos^2 \alpha = 1\\
15+
16+
\sin^2 (\sin^2 \alpha + \cos^2 \alpha) + \cos^2 \alpha = 1\\
17+
18+
\sin^2 \alpha + \cos^2 \alpha = 1\\
19+
20+
1 = 1
21+
22+
\end{align*}
23+
```
24+
25+
Pure algebraic manipulation!
26+
27+
Aside from that...
28+
29+
```math
30+
\begin{align*}
31+
\frac{\sin \alpha}{1 - \cos \alpha} = \frac{1 + \cos \alpha}{\sin \alpha}\\
32+
\frac{\sin \alpha}{1 - \cos \alpha} - \frac{1 + \cos \alpha}{\sin \alpha} = 0
33+
\\
34+
\frac{\sin^2 \alpha - (1 + \cos \alpha)(1 - \cos \alpha)}{(1 - \cos \alpha) \sin \alpha} = 0
35+
\\
36+
\frac{\sin^2 \alpha - 1 + \cos^2 \alpha}{(1 - \cos \alpha) \sin \alpha} = 0
37+
\\
38+
\frac{1 - 1}{(1 - \cos \alpha) \sin \alpha} = 0
39+
\\
40+
0 = 0
41+
\end{align*}
42+
```
43+
44+
I started only a month ago, yet I feel quite bad for inability to solve these problems in a matter of seconds. It took me like half an hour for each of these problems looking at formulas and displaying a problem in different states to notice what algebraic transformation to apply.

math/README.md

Lines changed: 17 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,17 @@
1+
# Math
2+
3+
The start of my journey in math.
4+
5+
[https://pripremna.matf.bg.ac.rs/](https://pripremna.matf.bg.ac.rs/)
6+
7+
## Schedule
8+
9+
- Saturday 10:15 _(in person)_ in the morning, 3 classes
10+
- Saturday 10:40 _(online)_ in the morning, 3 classes
11+
- Monday, pay and send the photo of the payment to the teacher
12+
13+
[The newline doesn't work issue.](https://github.com/mathjax/MathJax/issues/2312)
14+
15+
## Update
16+
17+
Through reading of [paul's online notes](https://tutorial.math.lamar.edu/Classes/Alg/DividingPolynomials.aspx) I realized that through my learning of mathematics 7 years ago wasn't fruitful. I could learn the problems and how to solve them, but I could solve only problems I solved with my math teacher. Two years ago when I started learning and reflecting on my learning experience, solving various algorithmic problems, reading about programming, learning various topics that feel difficult and cause confusion, I realized I was learning incorrectly. Now I want to create as much context when learning new stuff. Do not get bound by any limitations of a certain topic and how I have to learn the topic at all. I can start and quit any time I want. I realized that through contextualizing various difficult concepts I can learn them. Make them my own, think about them, etc...
Lines changed: 198 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,198 @@
1+
# Derivative of \(\frac{d}{dx}\arcsin{x}\) by the first principle
2+
3+
Start by using the limit definition:
4+
5+
\[
6+
\frac{d}{dx} \arcsin{x} =
7+
\lim\_{h \to 0} \frac{\arcsin(x+h) - \arcsin{x}}{h}
8+
\]
9+
10+
Derive the identity for \(\arcsin{x}-\arcsin{y}\):
11+
12+
\[
13+
\sin(\alpha-\beta)=\sin{\alpha}\cos{\beta}-\cos{\alpha}\sin{\beta}
14+
\\
15+
\arcsin(\sin(\alpha-\beta))=\arcsin(\sin{\alpha}\cos{\beta}-\cos{\alpha}\sin{\beta})
16+
\\
17+
\alpha-\beta=\arcsin(\sin{\alpha}\cos{\beta}-\cos{\alpha}\sin{\beta})
18+
\]
19+
20+
By substitution:
21+
22+
\[
23+
\alpha=\arcsin{x} \implies \sin{\alpha}=x \quad
24+
-\pi/2\leq\alpha\leq\pi/2 \quad
25+
\text{and} \quad -1 \leq x \leq 1
26+
\\
27+
\beta=\arcsin{y} \implies \sin{\beta}=y \quad
28+
-\pi/2\leq\beta\leq\pi/2 \quad
29+
\text{and} \quad -1 \leq y \leq 1
30+
\\
31+
\text{Bounds on } \alpha \text{ result in choice of the positive square root.}
32+
\\
33+
\cos{\alpha} = \sqrt{1 - \sin^2{\alpha}} = \sqrt{1 - x^2}
34+
\\
35+
\text{Bounds on } \beta \text{ result in choice of the positive square root.}
36+
\\
37+
\cos{\beta} = \sqrt{1 - sin^2{\beta}} = \sqrt{1 - y^2}
38+
\]
39+
40+
Therefore:
41+
42+
\[
43+
\arcsin{x} - \arcsin{y} = \arcsin(x\sqrt{1 - y^2} - y\sqrt{1 - x^2})
44+
\]
45+
46+
Back to the limit and apply the derived identity:
47+
48+
\[
49+
\frac{d}{dx} \arcsin{x} =
50+
\lim_{h \to 0} \frac{\arcsin(x+h) - \arcsin{x}}{h} =
51+
\\
52+
\lim_{h \to 0} \frac{\arcsin((x+h)\sqrt{1 - x^2} - x\sqrt{1 - (x+h)^2})}{h}
53+
\]
54+
55+
Apply substitution to get rid of the function in the numerator.
56+
57+
\[
58+
\arcsin((x+h)\sqrt{1 - x^2} - x\sqrt{1 - (x+h)^2}) = t
59+
\\
60+
\sin(\arcsin((x+h)\sqrt{1 - x^2} - x\sqrt{1 - (x+h)^2})) = \sin{t}
61+
\\
62+
(x+h)\sqrt{1 - x^2} - x\sqrt{1 - (x+h)^2} = \sin{t}
63+
\]
64+
65+
Solve for h:
66+
67+
\[
68+
(x+h)\sqrt{1 - x^2} - \sin{t} = x\sqrt{1 - (x+h)^2}
69+
\\
70+
[(x+h)\sqrt{1 - x^2} - \sin{t}]^2 = [x\sqrt{1 - (x+h)^2}]^2
71+
\\
72+
(x+h)^2\lvert1 - x^2\rvert - 2(x+h)\sqrt{1 - x^2}\sin{t} + \sin^2{t} = x^2\lvert1 - (x+h)^2\rvert
73+
\]
74+
75+
_(I am possibly wrong here. This is another substitution and I might not be able to rely on restrictions of x and y.)_ Because of restrictions \(-1 \leq x \leq 1\) and \(-1 \leq y \leq 1\) in identity \(\arcsin{x} - \arcsin{y} = \arcsin(x\sqrt{1-y^2} - y\sqrt{1-x^2})\) we know that the two expressions \(1-x^2 > 0\) and \(1 - y^2 > 0\) are positive. Therefore we can use the positive definition of the absolute value.
76+
77+
Therefore:
78+
79+
\[
80+
(x+h)^2(1 - x^2) - 2(x+h)\sqrt{1 - x^2}\sin{t} + \sin^2{t} = x^2(1 - (x+h)^2)
81+
\\
82+
(x+h)^2(1 - x^2) - 2(x+h)\sqrt{1 - x^2}\sin{t} + \sin^2{t} = x^2 - x^2(x+h)^2
83+
\\
84+
(x+h)^2(1 - x^2) + x^2(x+h)^2 - 2(x+h)\sqrt{1 - x^2}\sin{t} + \sin^2{t} - x^2 = 0
85+
\\
86+
(x+h)^2(1 - x^2 + x^2) - 2(x+h)\sqrt{1 - x^2}\sin{t} + \sin^2{t} - x^2 = 0
87+
\\
88+
(x+h)^2 - 2(x+h)\sqrt{1 - x^2}\sin{t} + \sin^2{t} - x^2 = 0
89+
\\
90+
[1](x+h)^2 - [2\sqrt{1 - x^2}\sin{t}](x+h) + [\sin^2{t} - x^2] = 0
91+
\]
92+
93+
We notice that it is a quadratic equation, where:
94+
95+
\[
96+
a = 1 \\
97+
b = -2\sqrt{1 - x^2}\sin{t} \\
98+
c = \sin^2{t} - x^2 \\
99+
\]
100+
101+
Solve for \((x + h)\) using quadratic formula \(\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\):
102+
103+
\[
104+
(x+h) = \frac{2\sqrt{1 - x^2}\sin{t} \pm \sqrt{[2\sqrt{1 - x^2}\sin{t}]^2 - 4[\sin^2{t} - x^2]}}{2}
105+
\\
106+
(x+h) = \frac{2\sqrt{1 - x^2}\sin{t} \pm \sqrt{4(1 - x^2)\sin^2{t} - 4\sin^2{t} + 4x^2}}{2}
107+
\\
108+
(x+h) = \frac{2\sqrt{1 - x^2}\sin{t} \pm \sqrt{4\sin^2{t} - 4x^2sin^2{t} - 4\sin^2{t} + 4x^2}}{2}
109+
\\
110+
(x+h) = \frac{2\sqrt{1 - x^2}\sin{t} \pm \sqrt{4x^2 - 4x^2sin^2{t}}}{2}
111+
\\
112+
(x+h) = \frac{2\sqrt{1 - x^2}\sin{t} \pm \sqrt{4x^2(1 - sin^2{t})}}{2}
113+
\\
114+
(x+h) = \frac{2\sqrt{1 - x^2}\sin{t} \pm 2\sqrt{x^2}\sqrt{1 - sin^2{t}}}{2}
115+
\\
116+
(x+h) = \sqrt{1 - x^2}\sin{t} \pm \sqrt{x^2}\sqrt{1 - sin^2{t}}
117+
\\
118+
(x+h) = \sqrt{1 - x^2}\sin{t} + \lvert{x}\rvert(\pm\sqrt{1 - sin^2{t}})
119+
\\
120+
h = \sqrt{1 - x^2}\sin{t} + \lvert{x}\rvert(\pm\sqrt{1 - sin^2{t}}) - x
121+
\]
122+
123+
Here we notice that the square root is a \(\cos{t}\):
124+
125+
\[
126+
\cos{t}=\pm\sqrt{1 - sin^2{t}}
127+
\]
128+
129+
_(I might be wrong here. I don't know how to handle the absolute value of x.)._ And in the context of the limit and substitution:
130+
131+
\[\text{The variables we solve for are } \mathbf{t} \text{ and } \mathbf{h} \text{. Therefore the variable } \mathbf{x} \text{ is treated as a constant.}\]
132+
133+
Since the absolute value of a constant is always positive value, we proceed as follows:
134+
135+
\[
136+
h = \sqrt{1 - x^2}\sin{t} + x\cos{t} - x
137+
\\
138+
h \to 0 \implies t \to 0
139+
\\
140+
\sqrt{1 - x^2}\sin{t} + x\cos{t} - x = 0
141+
\\
142+
0 + x - x = 0
143+
\\
144+
0 = 0
145+
\]
146+
147+
Therefore, we can apply the following substitution to the limit:
148+
149+
\[
150+
\arcsin((x+h)\sqrt{1 - x^2} - x\sqrt{1 - (x+h)^2}) = t
151+
\\
152+
h = \sqrt{1 - x^2}\sin{t} + x\cos{t} - x
153+
\\
154+
h \to 0 \implies t \to 0
155+
\]
156+
157+
Back to the limit and apply the substitution:
158+
159+
\[
160+
\frac{d}{dx} \arcsin{x} =
161+
\lim_{h \to 0} \frac{\arcsin(x+h) - \arcsin{x}}{h} =
162+
\\
163+
\lim_{h \to 0} \frac{\arcsin((x+h)\sqrt{1 - x^2} - x\sqrt{1 - (x+h)^2})}{h} =
164+
\\
165+
\lim_{t \to 0} \frac{t}{\sqrt{1 - x^2}\sin{t} + x\cos{t} - x}
166+
\]
167+
168+
Here we notice that:
169+
170+
\[[x\cos{t}] \rightarrow x \text{ as } t \to 0 \]
171+
172+
Therefore:
173+
174+
\[
175+
\lim_{t \to 0} \frac{t}{\sqrt{1 - x^2}\sin{t} + x\cos{t} - x} =
176+
\\
177+
\lim_{t \to 0} \frac{t}{\sqrt{1 - x^2}\sin(t) + x - x}
178+
\\
179+
\lim_{t \to 0} \frac{t}{\sqrt{1 - x^2}\sin(t)}
180+
\]
181+
182+
By the common limit and by the limit law:
183+
184+
\[
185+
\lim_{t \to 0} \frac{\sin{t}}{t} = 1
186+
\\
187+
[\lim_{t \to 0} \frac{\sin{t}}{t}]^{-1} = [1]^{-1}
188+
\\
189+
\lim_{t \to 0} [\frac{\sin{t}}{t}]^{-1} = [1]^{-1}
190+
\\
191+
\lim_{t \to 0} \frac{t}{\sin{t}} = 1
192+
\]
193+
194+
Hence, we conclude:
195+
196+
\[
197+
\lim_{t \to 0} \frac{t}{\sqrt{1 - x^2}\sin(t)} = \frac{1}{\sqrt{1 - x^2}}
198+
\]

math/resources.txt

Lines changed: 17 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,17 @@
1+
https://en.wikipedia.org/wiki/Algebra
2+
https://en.wikipedia.org/wiki/Arithmetic
3+
https://en.wikipedia.org/wiki/Variable_(mathematics)
4+
https://en.wikipedia.org/wiki/Equation_solving
5+
https://en.wikipedia.org/wiki/System_of_linear_equations
6+
https://en.wikipedia.org/wiki/Set_(mathematics)
7+
https://en.wikipedia.org/wiki/Mathematical_object
8+
https://en.wikipedia.org/wiki/Equivalence_class
9+
https://en.wikipedia.org/wiki/Congruence_relation#Basic_example
10+
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
11+
https://www.educationquizzes.com/knowledge-bank/what-are-bodmas-bidmas-and-pemdas/
12+
https://en.wikipedia.org/wiki/Indeterminate_(variable)
13+
https://en.wikipedia.org/wiki/Polynomial
14+
https://www.toppr.com/guides/maths-formulas/algebra-formula/
15+
https://www.splashlearn.com/math-vocabulary/coefficient
16+
https://www.reddit.com/r/math/
17+
https://www.reddit.com/r/math/comments/1af16z5/uses_of_complex_analysis/

0 commit comments

Comments
 (0)