This platform automates the creation of syllabus-aligned educational content and personalized assessments using AI. With a focus on scalability and performance, it streamlines the generation of learning materials and MCQs from textbook PDFs and curriculum documents. The system also provides performance evaluation, feedback, and remedial quizzes to improve users' performance.
AI-Driven-Personalized-Learning-and-Self-Assessment-Platform/
│
├── Frontend/
│ ├── index.html
│ ├── generate-materials.html
│ ├── materials-generated.html
│ ├── take-quiz.html
│ ├── quiz-result.html
│ ├── quiz-history.html
│ ├── styles.css
│ └── script.js
│
├── Backend/
│ ├── DBConnections/
│ │ ├── app.py
│ │ └── database.py
│ ├── Material Generation/
│ │ ├── 1_2_Comprehensive_Brief.py
│ │ ├── 3_keyword_NLP.py
│ │ ├── 4_Subtopic.py
│ │ ├── 5_SubtopicElimination.py
│ │ ├── mapping.py
│ │ └── SelectTopics.py
│ ├── Quiz Generation/
│ │ ├── quiz_gen.py
│ │ └── quiz_output.txt
│ └── Syllabus generation/
│ └── syllabusGen.py
│
├── Evaluation/
│ ├── BERT quiz.py
│ ├── cosine similarity.py
│ ├── LDA.py
│ ├── Simple LDA.py
│ ├── summaryEvalAll-MiniLM.py
│ ├── quizAnsEvalAll-MiniLM.py
│ ├── readabilityscores.py
│ └── readabilityvisualization.py
│
└── README.md
-
Extracts content from textbooks (PDF) and syllabus files.
-
Generates summaries: Comprehensive, Brief, Keywords, Subtopics.
-
AI-based generation of MCQs based on summarized content.
-
Instant evaluation of student answers.
-
Correct answers and scoring with weak-topic tracking.
-
Semantic alignment using Sentence Transformers and MiniLM.
-
Readability evaluation using Flesch Reading Ease, Dale-Chall, Gunning Fog, and Flesch-Kincaid metrics.
-
Tracks quiz history, weak topics.
-
Generates remedial content and follow-up assessments.
-
Backend: Flask (Python), PyMongo
-
Database: MongoDB Atlas (Collections: users, summaries, quizzes, user_attempts, quiz_history, weak_topics)
-
Frontend: HTML, CSS, JavaScript
-
AI Models & Libraries: Meta LLaMA, Sentence Transformers, ReportLab, Fitz, Ollama
git clone https://github.com/subha0319/AI-Driven-Personalized-Learning-and-Self-Assessment-Platform.git
cd Backend/DBConnections
pip install -r requirements.txt
python app.py
- POST /generate-summary
Generate and store summaries based on subject, unit, and topics.
- GET /get_quiz
Retrieve quiz for a selected topic with specified number of questions.
- POST /save_quiz_result
Store user’s quiz attempt with score and topic info.
- GET /get_quiz_history
Fetch all quiz attempts (filterable by subject).
-
Text summarization quality: cosine similarity, MiniLM embeddings
-
Readability scores calculated using: Flesch Reading Ease, Gunning Fog Index, Dale-Chall, etc.
-
Real-time progress dashboard
-
Dynamic difficulty adjustment
-
Teacher login and class management
-
Upload question papers and generate AI-based answers
