Skip to content

Seaborn “Beginner-to-Pro” EDA guide: clean, modular plot patterns + reusable mini EDA pipeline.

License

Notifications You must be signed in to change notification settings

tarekmasryo/seaborn-tutorials

Repository files navigation

📊 Seaborn — Beginner-to-Pro (EDA Reference) 🎯

A practical notebook for Exploratory Data Analysis (EDA) with Seaborn: beginner basics → customization → advanced patterns.


✅ What’s inside

  • 🧭 Clean, modular examples you can reuse in real projects
  • 🧱 A compact EDA mini-pipeline (Titanic)
  • 🧩 Version-safe snippets (Seaborn 0.11 vs 0.12+)
  • 📁 Lightweight repo layout (data/raw, artifacts) for optional extensions

🖼️ Example plots

  • Distribution with histogram + KDE
  • FacetGrid of penguins by island × sex
  • Pairplot of Iris dataset
  • Hexbin for dense scatter clouds
  • Correlation heatmap with upper-triangle mask

📂 Data

This notebook uses Seaborn built-in sample datasets:

  • tips, penguins, flights, iris, titanic

Note: sns.load_dataset() may need internet on first run (dataset download).
If you want to run fully offline, place your own CSV under data/raw/.


📁 Repo layout

.
├── seaborn-beginner-to-pro-clean-eda-guide.ipynb
├── data/
│   └── raw/               # optional local datasets (kept out of git)
├── artifacts/             # optional exported figures / outputs
├── repo_utils/
│   └── pathing.py         # local + Kaggle path helpers (optional)
├── CASE_STUDY.md
├── requirements.txt
├── README.md
└── LICENSE

🚀 Run locally

python -m venv .venv
# Windows: .venv\Scripts\activate
# macOS/Linux: source .venv/bin/activate

pip install -r requirements.txt

Open the notebook and run top-to-bottom in:

  • Jupyter / JupyterLab
  • VS Code notebooks

🧾 Case Study

See: CASE_STUDY.md (project story + key decisions).