A practical notebook for Exploratory Data Analysis (EDA) with Seaborn: beginner basics → customization → advanced patterns.
- 🧭 Clean, modular examples you can reuse in real projects
- 🧱 A compact EDA mini-pipeline (Titanic)
- 🧩 Version-safe snippets (Seaborn 0.11 vs 0.12+)
- 📁 Lightweight repo layout (
data/raw,artifacts) for optional extensions
- Distribution with histogram + KDE
- FacetGrid of penguins by island × sex
- Pairplot of Iris dataset
- Hexbin for dense scatter clouds
- Correlation heatmap with upper-triangle mask
This notebook uses Seaborn built-in sample datasets:
tips,penguins,flights,iris,titanic
Note: sns.load_dataset() may need internet on first run (dataset download).
If you want to run fully offline, place your own CSV under data/raw/.
.
├── seaborn-beginner-to-pro-clean-eda-guide.ipynb
├── data/
│ └── raw/ # optional local datasets (kept out of git)
├── artifacts/ # optional exported figures / outputs
├── repo_utils/
│ └── pathing.py # local + Kaggle path helpers (optional)
├── CASE_STUDY.md
├── requirements.txt
├── README.md
└── LICENSE
python -m venv .venv
# Windows: .venv\Scripts\activate
# macOS/Linux: source .venv/bin/activate
pip install -r requirements.txtOpen the notebook and run top-to-bottom in:
- Jupyter / JupyterLab
- VS Code notebooks
See: CASE_STUDY.md (project story + key decisions).