You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
ONNX implementation of the BGE-M3 multilingual embedding model and tokenizer with native C#, Java, and Python implementations. Generates all three embedding types: dense, sparse, and ColBERT vectors.
A demonstration of hybrid search with reranking using Qdrant and BGE-M3 model. A showcase of dense and sparse retrieval combined with ColBERT reranking for optimal search results
Example application for using the BGE-M3 embedding model and Google's Gemma-2-9B-Instruct generation model in a LangChain-based RAG pipeline to answer Lord of the Rings trivia questions
This is a FastAPI-based service for generating text embeddings, supporting multiple architectures like intfloat/multilingual-e5-large and BAAI/bge-m3. It automatically configures prefixes and sequence lengths based on the selected model. It supports both single text and batch processing.
Asistente RAG que ingiere la carpeta de proyectos local, construye un índice en ChromaDB con embeddings avanzados BGE‑M3 y responde preguntas a través de un LLM DeepSeek.
An intelligent Retrieval-Augmented Generation (RAG) system that helps students find answers within video lectures using semantic search and LLMs (Ollama/GPT). Automatically extracts subtitles, generates embeddings, retrieves relevant clips, and provides context-aware answers with timestamps.
Herramientas para procesar datos de desaparecidos: anonimización de narrativas con IA. Búsqueda semántica de casos similares mediante embeddings de texto (BGE-M3).