A simple neural network structure to classify many-body localized (MBL) and thermalized phases
-
Updated
Feb 7, 2021 - Jupyter Notebook
A simple neural network structure to classify many-body localized (MBL) and thermalized phases
Solutions for IBM Quantum Challenge Fall 2021
Computational toy model (CCA) for M-theory vacuum stability, MBL-protected moduli, and dark matter as entanglement memory burden.
The program performing exact diagonalization for fermion and boson many body localized hamiltonians.
Framework théorique unifiant l'entropie de Shannon, la mécanique statistique et les phases topologiques. Transforme la frustration géométrique en ressource générative pour l'IA non-ergodique et la matière programmable.
A Domain-Driven architecture for the autonomous manufacturing of Rad-Hard quantum sensors from lunar regolith. By utilizing Many-Body Localization (MBL) within an Al-Cu-Fe Quasicrystal framework, the GOLDEN-SIEVE transforms raw lunar elements into a self-healing, topological shield. This repository hosts the full-process simulation
Une implémentation de référence et analyse rigoureuse des Cristaux de Temps Discrets (DTC), focalisée sur la physique de Floquet, la localisation MBL et la protection des états quantiques (Cat Scars)
Add a description, image, and links to the many-body-localization topic page so that developers can more easily learn about it.
To associate your repository with the many-body-localization topic, visit your repo's landing page and select "manage topics."