Skip to content

PyBullet Gymnasium environments for single and multi-agent reinforcement learning of quadcopter control

License

Notifications You must be signed in to change notification settings

utiasDSL/gym-pybullet-drones

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

839 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tip

For research work with symbolic dynamics and constraints, also try safe-control-gym

For GPU-accelerated, differentiable, JAX-based simulation, also try crazyflow

For production-grade deployment of ROS2 + PX4/ArduPilot + YOLO/LiDAR, use aerial-autonomy-stack

gym-pybullet-drones

This is a minimalist refactoring of the original gym-pybullet-drones repository, designed for compatibility with gymnasium, stable-baselines3 2.0, and betaflight/crazyflie-firmware SITL.

NOTE: if you want to access the original codebase, presented at IROS in 2021, please git checkout [paper|master]

formation flight control info

Installation

Tested on Intel x64/Ubuntu 22.04 and Apple Silicon/macOS 14.1.

git clone https://github.com/utiasDSL/gym-pybullet-drones.git
cd gym-pybullet-drones/

conda create -n drones python=3.10
conda activate drones

pip3 install --upgrade pip
pip3 install -e . # if needed, `sudo apt install build-essential` to install `gcc` and build `pybullet`

# check installed packages with `conda list`, deactivate with `conda deactivate`, remove with `conda remove -n drones --all`

Use

PID control examples

cd gym_pybullet_drones/examples/
python3 pid.py # position and velocity reference
python3 pid_velocity.py # desired velocity reference

Downwash effect example

cd gym_pybullet_drones/examples/
python3 downwash.py

Reinforcement learning examples (SB3's PPO)

cd gym_pybullet_drones/examples/
python learn.py # task: single drone hover at z == 1.0
python learn.py --multiagent true # task: 2-drone hover at z == 1.2 and 0.7
LATEST_MODEL=$(ls -t results | head -n 1) && python play.py --model_path "results/${LATEST_MODEL}/best_model.zip" # play and visualize the most recent learned policy after training

rl example marl example

Run all tests

# from the repo's top folder
cd gym-pybullet-drones/
pytest tests/

Betaflight SITL example (Ubuntu only)

git clone https://github.com/betaflight/betaflight 
cd betaflight/
git checkout cafe727 # `master` branch head at the time of writing (future release 4.5)
make arm_sdk_install # if needed, `apt install curl``
make TARGET=SITL # comment out line: https://github.com/betaflight/betaflight/blob/master/src/main/main.c#L52
cp ~/gym-pybullet-drones/gym_pybullet_drones/assets/eeprom.bin ~/betaflight/ # assuming both gym-pybullet-drones/ and betaflight/ were cloned in ~/
betaflight/obj/main/betaflight_SITL.elf

In another terminal, run the example

conda activate drones
cd gym_pybullet_drones/examples/
python3 beta.py --num_drones 1 # check the steps in the file's docstrings to use multiple drones

utiasDSL pycffirmware Python Bindings example (multiplatform, single-drone)

First, install pycffirmware for Ubuntu, macOS, or Windows, then

cd gym_pybullet_drones/examples/
python3 cf.py

Citation

If you wish, please cite our IROS 2021 paper (and original codebase) as

@INPROCEEDINGS{panerati2021learning,
      title={Learning to Fly---a Gym Environment with PyBullet Physics for Reinforcement Learning of Multi-agent Quadcopter Control}, 
      author={Jacopo Panerati and Hehui Zheng and SiQi Zhou and James Xu and Amanda Prorok and Angela P. Schoellig},
      booktitle={2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
      year={2021},
      volume={},
      number={},
      pages={7512-7519},
      doi={10.1109/IROS51168.2021.9635857}
}

References


University of Toronto's Dynamic Systems Lab / Vector Institute / University of Cambridge's Prorok Lab