Skip to content

Open specification for todo lists, plans, and playbooks used by agentic coding systems

Notifications You must be signed in to change notification settings

visionik/vBRIEF

Repository files navigation

vBRIEF v0.5-beta

BETA RELEASE: Core architecture is stable but API implementations are pending. Feedback welcome via GitHub issues.

vBRIEF (Basic Relational Intent Exchange Format) is an open, standardized format for agentic memory systems that unifies todos, plans, playbooks, and prompt-graphs into a single, powerful Plan model.

graph LR
    A[Simple Tasks] --> B[Plan Container]
    C[Strategic Plans] --> B
    D[Knowledge/Playbooks] --> B
    E[Prompt Graphs] --> B
    B --> F[Unified Format]
    F --> G[Token Efficient]
    F --> H[DAG Support]
    F --> I[Interoperable]
    
    style B fill:#4CAF50,color:#fff
    style F fill:#2196F3,color:#fff
Loading

Quick Start

Minimal Plan (todo-like usage):

{
  "vBRIEFInfo": {"version": "0.5"},
  "plan": {
    "title": "Daily Tasks",
    "status": "running",
    "items": [
      {"title": "Fix auth bug", "status": "pending"},
      {"title": "Review PR #123", "status": "running"}
    ]
  }
}

That's it! Only 4 required fields: version, title, status, items.

What's New in v0.5

Major Changes

🎉 Unified Plan Model - Single container replaces TodoList/Plan/Playbook
📊 DAG Support - Directed acyclic graphs with 4 edge types
🔗 Hierarchical IDs - Dot notation for nested organization
35-40% Token Savings - TRON encoding for LLMs
Comprehensive Validation - Schema + conformance + cycle detection
🛠️ Developer Tools - DAG visualizer and validators included

Graduated Complexity Model

graph TD
    A[Minimal<br/>title + items] --> B[+ Narratives<br/>context & rationale]
    A --> C[+ Tags & Metadata<br/>organization]
    B --> D[+ Edges<br/>DAG workflows]
    C --> D
    D --> E[+ Hierarchical IDs<br/>nested structure]
    D --> F[+ Plan References<br/>modular composition]
    
    style A fill:#e8f5e9
    style B fill:#fff3e0
    style C fill:#e3f2fd
    style D fill:#fce4ec
    style E fill:#f3e5f5
    style F fill:#e0f2f1
Loading

Start simple, add complexity only when needed.

Core Concepts

Plan Structure

classDiagram
    class Plan {
        +string title*
        +Status status*
        +PlanItem[] items*
        +object narratives
        +Edge[] edges
        +string[] tags
        +datetime created
        +datetime updated
    }
    
    class PlanItem {
        +string id
        +string title*
        +Status status*
        +object narrative
        +PlanItem[] subItems
        +string planRef
        +string priority
    }
    
    class Edge {
        +string from*
        +string to*
        +EdgeType type*
    }
    
    Plan "1" --> "*" PlanItem : contains
    Plan "1" --> "*" Edge : defines
    PlanItem "1" --> "*" PlanItem : nests
    
    note for Plan "*Required fields"
Loading

Status Lifecycle

stateDiagram-v2
    [*] --> draft
    draft --> proposed
    proposed --> approved
    approved --> running
    draft --> running: skip approval
    running --> blocked
    blocked --> running
    running --> completed
    running --> cancelled
    completed --> [*]
    cancelled --> [*]
Loading

8 status values: draft, proposed, approved, pending, running, completed, blocked, cancelled

DAG Edge Types

graph TD
    A[Task A] -->|blocks| B[Task B]
    A -.->|informs| C[Task C]
    D[Task D] ==>|invalidates| E[Task E]
    F[Task F] -.->|suggests| G[Task G]
    
    style A fill:#4CAF50,color:#fff
    style B fill:#2196F3,color:#fff
    style C fill:#FF9800,color:#fff
    style D fill:#f44336,color:#fff
    style E fill:#9C27B0,color:#fff
Loading
  • blocks (→): Hard dependency - must complete before
  • informs (⋯→): Soft dependency - provides useful context
  • invalidates (⇒): Completion makes target obsolete
  • suggests (⋯→): Optional follow-up recommendation

Goals

vBRIEF establishes a universal, open standard for agentic memory systems that:

  1. Reduces LLM context overhead via efficient structured formats
  2. Prevents context collapse by preserving detail and nuance
  3. Enables interoperability across AI agents and tools
  4. Supports full lifecycle from tasks → plans → accumulated knowledge
  5. Prevents vendor lock-in with open, documented format
  6. Scales complexity through modular, graduated design
  7. Bridges human-AI collaboration with dual encoding (JSON/TRON)
  8. 🔄 Enables transactional logs for IP defense (future)
  9. 🔄 Accelerates research adoption via extensible tools (future)
  10. Works with non-AI tools - universal format

Documentation

Examples

See examples/ directory for complete examples:

  • minimal-plan.vbrief.json - Simple task list
  • structured-plan.vbrief.json - Plan with narratives
  • retrospective-plan.vbrief.json - Playbook-style knowledge capture
  • dag-plan.vbrief.json - CI/CD pipeline with dependencies
  • dag-plan.vbrief.tron - Same as above in TRON format

Use Cases

1. Simple Task Tracking

Use Plan as a simple todo list:

{
  "vBRIEFInfo": {"version": "0.5"},
  "plan": {
    "title": "Sprint 1 Tasks",
    "status": "running",
    "items": [
      {"title": "Implement login", "status": "completed"},
      {"title": "Write tests", "status": "running"},
      {"title": "Update docs", "status": "pending"}
    ]
  }
}

2. Strategic Planning

Add narratives for context and design rationale:

{
  "vBRIEFInfo": {"version": "0.5"},
  "plan": {
    "id": "api-migration",
    "title": "Migrate to GraphQL",
    "status": "proposed",
    "narratives": {
      "Proposal": "Migrate REST API to GraphQL for better DX",
      "Problem": "50+ REST endpoints, inconsistent patterns",
      "Risk": "Team learning curve, N+1 optimization"
    },
    "items": [
      {"id": "research", "title": "Research & POC", "status": "completed"},
      {"id": "schema", "title": "Define Schema", "status": "running"}
    ]
  }
}

3. Complex Workflows (DAG)

Define dependencies and parallel execution:

{
  "vBRIEFInfo": {"version": "0.5"},
  "plan": {
    "title": "CI/CD Pipeline",
    "status": "running",
    "items": [
      {"id": "lint", "title": "Lint", "status": "completed"},
      {"id": "test", "title": "Test", "status": "running"},
      {"id": "build", "title": "Build", "status": "pending"},
      {"id": "deploy", "title": "Deploy", "status": "pending"}
    ],
    "edges": [
      {"from": "lint", "to": "build", "type": "blocks"},
      {"from": "test", "to": "build", "type": "blocks"},
      {"from": "build", "to": "deploy", "type": "blocks"}
    ]
  }
}

Visualize with tools/dag-visualizer.py:

graph TD
    lint[Lint<br/>completed] --> build[Build<br/>pending]
    test[Test<br/>running] --> build
    build --> deploy[Deploy<br/>pending]
    
    style lint fill:#4CAF50,color:#fff
    style test fill:#2196F3,color:#fff
Loading

4. Knowledge Capture (Playbook-style)

Use retrospective narratives for lessons learned:

{
  "vBRIEFInfo": {"version": "0.5"},
  "plan": {
    "title": "Q4 2025 Retrospective",
    "status": "completed",
    "narratives": {
      "Outcome": "Shipped 3 major features, reduced latency by 40%",
      "Strengths": "Strong collaboration, effective load testing",
      "Weaknesses": "Underestimated DB migration complexity",
      "Lessons": "Always profile before optimizing; stage rollouts strictly"
    },
    "items": [],
    "tags": ["retrospective", "q4-2025"]
  }
}

Changelog

v0.4 → v0.5-beta (2026-02-03)

Breaking Changes:

  • ❌ TodoList removed - use Plan with minimal fields
  • ❌ Playbook removed - use Plan with retrospective narratives
  • dependencies field - use edges with type: "blocks"
  • 🔄 inProgressrunning status
  • 🔄 Plan.narratives now optional

New Features:

  • ✨ Unified Plan model with graduated complexity
  • ✨ DAG support: edges, cycle detection, hierarchical IDs
  • ✨ Universal 8-value Status enum
  • ✨ TitleCase narrative keys
  • ✨ Comprehensive validation tools
  • ✨ DAG visualizer with Mermaid output

Migration: See MIGRATION.md for complete guide.

Known Limitations (Beta):

  • ⏳ API implementations pending (Go, Python, TypeScript)
  • ⏳ TRON parser libraries - use JSON for now

See RELEASE-NOTES-v0.5-beta.md for details.

Validation

Schema Validation

python validation/vbrief_validator.py examples/minimal-plan.vbrief.json

Validates:

  • ✅ JSON Schema conformance
  • ✅ Required fields present
  • ✅ Status enum values
  • ✅ DAG cycle detection
  • ✅ Edge reference integrity
  • ✅ Hierarchical ID syntax
  • ⚠️ TitleCase narrative keys (warning)

DAG Visualization

python tools/dag-visualizer.py examples/dag-plan.vbrief.json

Outputs:

  • Mermaid diagram (markdown, HTML, or raw)
  • Status-based node coloring
  • Edge type visualization
  • 4 graph directions (TB, LR, RL, BT)

Design Philosophy

vBRIEF uses graduated complexity:

  1. Minimal Core - Only 4 required fields
  2. Optional Features - Add narratives, edges, metadata as needed
  3. Single Container - Plan adapts from simple todos to complex workflows
  4. Token Efficient - TRON encoding saves 35-40% vs JSON

Start simple. Add complexity only when it provides value.

Conformance

vBRIEF v0.5 conformant document:

  • Contains vBRIEFInfo with version: "0.5"
  • Contains exactly one plan object
  • Plan has required fields: title, status, items
  • Status values from enum: draft, proposed, approved, pending, running, completed, blocked, cancelled
  • If edges present: no cycles, all references valid
  • Unknown fields preserved by tools

Token Efficiency: TRON vs JSON

vBRIEF supports both formats. TRON is preferred for LLM workflows; JSON for compatibility.

Example Comparison

Same data in both formats:

JSON (98 tokens):

{
  "items": [
    {"id": "1", "title": "Auth", "status": "completed"},
    {"id": "2", "title": "API", "status": "running"},
    {"id": "3", "title": "Tests", "status": "pending"}
  ]
}

TRON (62 tokens, 37% reduction):

class Item: id, title, status

items: [
  Item("1", "Auth", "completed"),
  Item("2", "API", "running"),
  Item("3", "Tests", "pending")
]

Benefits:

  • ⚡ 35-40% fewer tokens = lower LLM costs
  • 📄 More data fits in context windows
  • 👁️ Class-based schemas reduce noise
  • 🔄 Lossless with JSON (superset)

Resources:

When to Use Each

  • TRON: Agent-to-agent communication, token-constrained scenarios, internal storage
  • JSON: Universal compatibility, existing tooling, archival, human editing

Getting Started

  1. Read GUIDE.md for examples and patterns
  2. Validate your documents with validation/vbrief_validator.py
  3. Visualize DAGs with tools/dag-visualizer.py
  4. Migrate v0.4 docs using MIGRATION.md

Contributing

Feedback and contributions welcome!

Repository Structure

vBRIEF/
├── schemas/              # JSON Schema definitions
├── examples/             # Sample vBRIEF documents  
├── validation/           # Schema and DAG validators
├── tools/                # DAG visualizer
├── docs/                 # Additional documentation
├── SPECIFICATION.md     # Technical specification
├── GUIDE.md              # User guide
├── MIGRATION.md          # Migration guide
└── RELEASE-NOTES-v0.5-beta.md

License

This specification is released under CC BY 4.0.

Author

Jonathan Taylor (visionik@pobox.com)


For complete technical details, see SPECIFICATION.md.

About

Open specification for todo lists, plans, and playbooks used by agentic coding systems

Resources

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published