Skip to content

Official implementation of "Emergent Outlier View Rejection in Visual Geometry Grounded Transformers"

Notifications You must be signed in to change notification settings

coopVGGTdelete/RobustVGGT

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Emergent Outlier View Rejection in Visual Geometry Grounded Transformers

Jisang Han1,2* · Sunghwan Hong3* · Jaewoo Jung1 · Wooseok Jang1 · Honggyu An1 · Qianqian Wang4 · Seungryong Kim1† · Chen Feng2†

1KAIST AI, 2New York University, 3ETH AI Center, ETH Zurich, 4UC Berkeley

Logo

We reveal that Visual Geometry Grounded Transformers (VGGT) has a built-in ability to detect outliers, which we leverage to perform outlier-view rejection without any fine-tuning.

What to expect:

  • Demo inference code
  • Evaluation code
  • Visualization code

Installation

Our code is developed based on pytorch 2.5.1, CUDA 12.1 and python 3.10.

We recommend using conda for installation:

conda create -n robust_vggt python=3.10
conda activate robust_vggt

pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu121
pip install -r requirements.txt

Running Demo

To run the robust reconstruction demo with outlier rejection:

python robust_vggt.py --image-dir examples/trevi
python robust_vggt.py --image-dir examples/notredame --rej-thresh 0.3

Citation

@article{han2025emergent,
  title={Emergent Outlier View Rejection in Visual Geometry Grounded Transformers},
  author={Han, Jisang and Hong, Sunghwan and Jung, Jaewoo and Jang, Wooseok and An, Honggyu and Wang, Qianqian and Kim, Seungryong and Feng, Chen},
  journal={arXiv preprint arXiv:2512.04012},
  year={2025}
}

Acknowledgement

We thank the authors of VGGT for their excellent work and code, which served as the foundation for this project.

About

Official implementation of "Emergent Outlier View Rejection in Visual Geometry Grounded Transformers"

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%