Jisang Han1,2* · Sunghwan Hong3* · Jaewoo Jung1 · Wooseok Jang1 · Honggyu An1 · Qianqian Wang4 · Seungryong Kim1† · Chen Feng2†
We reveal that Visual Geometry Grounded Transformers (VGGT) has a built-in ability to detect outliers, which we leverage to perform outlier-view rejection without any fine-tuning.
What to expect:
- Demo inference code
- Evaluation code
- Visualization code
Our code is developed based on pytorch 2.5.1, CUDA 12.1 and python 3.10.
We recommend using conda for installation:
conda create -n robust_vggt python=3.10
conda activate robust_vggt
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu121
pip install -r requirements.txtTo run the robust reconstruction demo with outlier rejection:
python robust_vggt.py --image-dir examples/trevipython robust_vggt.py --image-dir examples/notredame --rej-thresh 0.3@article{han2025emergent,
title={Emergent Outlier View Rejection in Visual Geometry Grounded Transformers},
author={Han, Jisang and Hong, Sunghwan and Jung, Jaewoo and Jang, Wooseok and An, Honggyu and Wang, Qianqian and Kim, Seungryong and Feng, Chen},
journal={arXiv preprint arXiv:2512.04012},
year={2025}
}
We thank the authors of VGGT for their excellent work and code, which served as the foundation for this project.