Skip to content

v0.1.0

Latest

Choose a tag to compare

@jman4162 jman4162 released this 06 Feb 07:03
· 2 commits to main since this release

Initial Release

A pip-installable Python package for fine-tuning Vision Transformer (ViT) models.

Features

  • Easy model loading: Pretrained ViT variants (vit_b_16, vit_b_32, vit_l_16)
  • Modern training: Mixed precision (AMP), cosine annealing with warmup, early stopping
  • CIFAR-10/100 support: Built-in data loaders with proper train/val/test splits
  • Evaluation tools: Metrics, confusion matrices, classification reports
  • Attention visualization: Interpretable attention maps
  • CLI interface: Train, evaluate, predict, and export models
  • ONNX export: Deploy models to production

Installation

pip install vit-trainer

Quick Start

from vit_trainer import Trainer, load_model, get_cifar10_loaders

train_loader, val_loader, test_loader = get_cifar10_loaders(batch_size=64)
model = load_model("vit_b_16", num_classes=10)
trainer = Trainer(model, lr=1e-4, use_amp=True)
trainer.fit(train_loader, val_loader, epochs=10)