-
Notifications
You must be signed in to change notification settings - Fork 0
CMS_STRATEGY_PAPER
Version: 1.0.0
Datum: Dezember 2025
Status: Veröffentlicht
Zielgruppe: Entscheidungsträger, IT-Architekten, CMS-Verantwortliche in Behörden und Unternehmen
ThemisDB revolutioniert die Content-Management-Infrastruktur durch die nahtlose Integration von traditionellen CMS-Anforderungen mit modernen Datenhaltungs- und Analyse-Paradigmen. Als Multi-Model-Datenbank vereint ThemisDB relationale, dokumentenbasierte, Graph- und Vektordaten in einer einzigen, hochperformanten Plattform – perfekt abgestimmt auf die komplexen Anforderungen von Behörden und Großunternehmen.
- Vereinfachte Architektur: Eine Datenbank statt fragmentierter CMS-Landschaften
- Compliance-Ready: DSGVO, BSI, SOC 2 konforme Datenhaltung von Anfang an
- KI-Integration: Native LLM-Unterstützung für intelligente Content-Analyse ohne externe APIs
- Enterprise-Skalierung: Horizontale Skalierung für millionen von Content-Assets
- Kosteneffizienz: Open Source Community Edition mit optionalen Enterprise-Features
ThemisDB bietet einzigartige Vorteile gegenüber traditionellen CMS-Backends:
| Traditionelle CMS-Architektur | ThemisDB Ansatz |
|---|---|
| SQL + NoSQL + Suchindex + Vektor-DB | Einheitliche Multi-Model Plattform |
| Externe KI-APIs (Kosten, Latenz, Privacy) | Embedded LLM Engine (llama.cpp) |
| Komplexe ETL für Analytics | Native OLAP + CEP Engine |
| Manuelle Content-Taxonomie | Automatische Graph-basierte Taxonomie |
| Separate Geo-Systeme | Integrierte Geo-Spatial Features |
| Legacy Security Modelle | Zero-Trust mit RBAC + Field Encryption |
- DSGVO-Konformität: Recht auf Vergessenwerden, Datenminimierung, Zweckbindung
- BSI Grundschutz: IT-Sicherheit nach deutschem Standard
- E-Government Standards: XÖV, OSCI, OZG-Kompatibilität
- Revisionssichere Archivierung: Unveränderbare Audit-Logs nach GoBD
ThemisDB Lösung:
# Automatische DSGVO-Compliance
content:
retention_policy: "legal_hold_7_years"
anonymization: "gdpr_compliant"
audit_logging: "enabled"
security:
field_level_encryption: true
tls_version: "1.3"
rbac_model: "zero_trust"Detaillierte DSGVO-Compliance-Features:
| DSGVO-Anforderung | ThemisDB Implementierung | Automatisierungsgrad |
|---|---|---|
| Art. 17 - Recht auf Vergessenwerden | Kaskadierendes Löschen über alle Indizes, automatische Tombstone-Generierung | 100% automatisch |
| Art. 15 - Auskunftsrecht | Query-API für alle personenbezogenen Daten eines Subjekts, strukturierter Export | 95% automatisch |
| Art. 20 - Datenübertragbarkeit | Maschinenlesbare Exporte (JSON, XML, CSV), standardisierte Formate | 100% automatisch |
| Art. 25 - Privacy by Design | Standardmäßige Verschlüsselung, minimale Datensammlung, Pseudonymisierung | Built-in |
| Art. 30 - Verzeichnis von Verarbeitungstätigkeiten | Automatische Protokollierung aller Zugriffe mit Zweck-Tagging | 100% automatisch |
| Art. 32 - Datensicherheit | TLS 1.3, Field-Level Encryption, HSM-Integration (Enterprise) | Built-in |
| Art. 33/34 - Meldepflicht bei Datenpannen | Real-Time Breach Detection, automatische Alert-Generierung | 90% automatisch |
BSI Grundschutz - Baustein-Mapping:
ThemisDB erfüllt folgende BSI-Bausteine:
- APP.4.3 - Datenbanksysteme: ACID-Transaktionen, Backup-Strategien, Zugriffskontrolle
- CON.1 - Kryptokonzept: TLS 1.3, AES-256-GCM, sichere Schlüsselverwaltung
- OPS.1.1.2 - Ordnungsgemäße IT-Administration: RBAC, Audit-Logging, 4-Augen-Prinzip
- APP.3.1 - Webanwendungen: OWASP Top 10 Schutz, Input-Validierung, XSS/CSRF-Prävention
E-Government-Kompatibilität:
# XÖV-Standard Support (XML-basierter Datenaustausch)
content:
formats:
- xjustiz: "enabled" # Justizbereich
- xdomea: "enabled" # Dokumentenmanagement
- xbau: "enabled" # Bauwesen
- xpersonenstand: "enabled" # Personenstandswesen
# OSCI-Transport (Online Services Computer Interface)
security:
osci:
enabled: true
certificates: "/etc/themis/osci/"
signature_verification: true
encryption_level: "advanced"- Multi-Tenant Fähigkeit für föderale Strukturen
- Content-Varianten für Sprachen und Regionen
- Metadaten-Extraktion für Accessibility-Features
- Versionierung mit vollständiger Historie
ThemisDB Lösung:
- Document Model: Flexible Schema für mehrsprachige Content-Varianten
- Graph Model: Beziehungen zwischen Übersetzungen und Varianten
- ACID Transactions: Atomare Updates über alle Varianten hinweg
- Millionen von Bildern, Videos, PDFs
- Automatische Metadaten-Extraktion
- Content-Deduplizierung
- Intelligente Suche über alle Asset-Typen
ThemisDB Differenzierung:
// Automatische Image Analysis mit Multi-Backend Support
POST /content/import
{
"content": {
"mime_type": "image/jpeg",
"auto_extract": true // Vision LLM, CLIP, OpenCV
}
}
// → Automatisch: Tags, OCR, Object Detection, Embeddings- Workflow-Management für Content-Produktion
- Kollaborative Bearbeitung
- Versionierung und Rollback
- Genehmigungsprozesse
ThemisDB Lösung:
- Transaction Support: ACID-Garantien für Multi-User-Workflows
- Change Data Capture (CDC): Real-Time Updates via WebSocket/SSE
- Graph Traversals: Workflow-Status über Graph-Queries
- Sub-100ms Antwortzeiten bei Millionen Assets
- Horizontale Skalierung ohne Downtime
- CDN-Integration und Edge-Caching
- Geo-Replikation für globale Teams
ThemisDB Performance:
📝 Content Write: 45,000 ops/s
📖 Content Read: 120,000 ops/s
🔍 Full-Text Search: 3.4M queries/s
🎯 Semantic Search: 7.17M queries/s (RAG)
🖼️ Image Embeddings: 411k vectors/s
ThemisDB vereint vier Datenmodelle in einer einzigen Plattform:
-- AQL (Advanced Query Language)
FOR doc IN content
FILTER doc.category == "press_release"
FILTER doc.published_date > "2025-01-01"
SORT doc.created_at DESC
LIMIT 100
RETURN doc{
"id": "article:2025-001",
"type": "article",
"title": {"de": "Titel", "en": "Title"},
"body": {"de": "...", "en": "..."},
"metadata": {
"author": "user:123",
"tags": ["politik", "bundesregierung"],
"custom_fields": {} // Beliebige Erweiterungen
}
}[Artikel] --zitiert--> [Pressemitteilung]
|
+--kategorisiert_als--> [Thema: Gesundheit]
|
+--verfasst_von--> [Autor: Dr. Schmidt]
|
+--erwähnt--> [Organisation: BMI]
Use Case: Automatische Related-Content Empfehlungen
// Graph Traversal für "Ähnliche Artikel"
TRAVERSE OUTBOUND "article:2025-001"
GRAPH content_relations
FILTER edge.type IN ["references", "similar_topic"]
OPTIONS {maxDepth: 2}
RETURN DISTINCT path# Hybrid Search: BM25 + Semantic Similarity
{
"query": "Klimaschutzmaßnahmen der Bundesregierung",
"hybrid": {
"keyword_weight": 0.3,
"semantic_weight": 0.7,
"filters": {"year": 2025}
}
}
# → Findet relevante Dokumente auch bei abweichender TerminologieProblem traditioneller CMS:
- Externe OpenAI/Anthropic APIs → Kosten, Latenz, Datenschutz-Risiken
- Vendor Lock-in
- Keine Offline-Fähigkeit
ThemisDB Lösung: "ThemisDB keeps its own llamas"
# config/llm.yaml
llm:
enabled: true
model: "llama-3-8b-instruct.gguf"
backend: "cuda" # oder cpu, vulkan, hip
quantization: "Q4_K_M" # Speicher-effizientEnterprise Use Cases:
- Automatische Content-Klassifizierung
POST /llm/classify
{
"text": "...",
"categories": ["Politik", "Wirtschaft", "Kultur", "Sport"],
"model": "llama-3-8b"
}
# → Klassifizierung läuft lokal, keine API-Kosten- Automatische Zusammenfassungen
POST /llm/summarize
{
"content_id": "article:2025-001",
"target_length": 200,
"language": "de"
}
# → Generiert DSGVO-konforme Zusammenfassung on-premise- Intelligente Content-Suche
# Natural Language Query
POST /content/search
{
"query": "Zeige mir alle Artikel über KI-Regulierung aus 2024",
"mode": "natural_language",
"llm_enabled": true
}
# → LLM übersetzt in strukturierte Query// src/content/image_processor.cpp
Backends:
- llama.cpp Vision (LLaVA, bakllava)
- ONNX CLIP (OpenAI CLIP models)
- OpenCV DNN (YOLO, MobileNet)
// Automatisch beim Upload:
{
"image": "photo.jpg",
"analysis": {
"objects": ["person", "car", "building"],
"text_ocr": "Bundesministerium für...",
"scene": "outdoor_urban",
"embedding": [0.123, -0.456, ...]
}
}// Jede Operation erfordert explizite Autorisierung
class ContentAccessControl {
bool canRead(User user, Content content) {
return rbac_.hasPermission(user, "content:read", content.id) &&
content.classification <= user.clearance_level;
}
bool canWrite(User user, Content content) {
return rbac_.hasPermission(user, "content:write", content.id) &&
audit_.logAccess(user, content, "write");
}
};# Sensitive Felder automatisch verschlüsselt
content:
fields:
- name: "personal_data"
encryption: "AES-256-GCM"
key_rotation: "90_days"
- name: "financial_info"
encryption: "HSM" # Hardware Security Module| Feature | Community | Enterprise |
|---|---|---|
| TLS 1.3 Verschlüsselung | ✅ | ✅ |
| RBAC (Role-Based Access) | ✅ | ✅ |
| Audit Logging | ✅ | ✅ |
| Field-Level Encryption | ❌ | ✅ |
| HSM Integration | ❌ | ✅ |
| GDPR Reporting | Basic | ✅ Advanced |
| SOC 2 Compliance | ❌ | ✅ |
| HIPAA Compliance | ❌ | ✅ |
Defense in Depth - Mehrschichtige Sicherheit:
┌─────────────────────────────────────────────────────────┐
│ Layer 1: Network Security (Perimeter) │
│ - TLS 1.3 (mandatory) │
│ - mTLS für Service-to-Service │
│ - IP Whitelisting / VPN │
│ - DDoS Protection (Rate Limiting) │
└─────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────┐
│ Layer 2: Authentication & Authorization │
│ - Multi-Factor Authentication (MFA) │
│ - SAML 2.0 / OAuth 2.0 / LDAP │
│ - Session Management mit JWT │
│ - RBAC mit Fine-Grained Permissions │
└─────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────┐
│ Layer 3: Application Security │
│ - Input Validation (alle User-Inputs) │
│ - SQL Injection Prevention (Prepared Statements) │
│ - XSS Protection (Content Security Policy) │
│ - CSRF Tokens für State-Changing Operations │
└─────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────┐
│ Layer 4: Data Security │
│ - Encryption at Rest (AES-256-GCM) │
│ - Encryption in Transit (TLS 1.3) │
│ - Field-Level Encryption für PII │
│ - Transparent Data Encryption (TDE) │
└─────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────┐
│ Layer 5: Monitoring & Audit │
│ - Real-Time Security Event Monitoring │
│ - Audit Trail (unveränderbar) │
│ - Anomaly Detection │
│ - SIEM Integration (Splunk, ELK) │
└─────────────────────────────────────────────────────────┘
Konkrete Security-Konfiguration:
# security.yaml - Production-Ready Configuration
# 1. TLS/mTLS Configuration
tls:
enabled: true
min_version: "1.3"
cipher_suites:
- TLS_AES_256_GCM_SHA384
- TLS_CHACHA20_POLY1305_SHA256
cert_path: "/etc/themis/certs/server.crt"
key_path: "/etc/themis/certs/server.key"
# Mutual TLS für Service-to-Service
mtls:
enabled: true
client_ca_path: "/etc/themis/certs/client-ca.crt"
require_and_verify_client_cert: true
# 2. Authentication
authentication:
session_timeout: "12h"
max_sessions_per_user: 3
password_policy:
min_length: 12
require_uppercase: true
require_lowercase: true
require_numbers: true
require_special: true
expiry_days: 90
mfa:
enabled: true
required_for_roles: ["admin", "content_manager"]
providers: ["totp", "webauthn"]
jwt:
algorithm: "RS256"
issuer: "themisdb.example.com"
key_rotation: "30d"
# 3. Authorization (RBAC)
rbac:
default_role: "viewer"
roles:
admin:
permissions: ["*"]
content_manager:
permissions:
- "content:create"
- "content:read"
- "content:update"
- "content:delete"
- "workflow:manage"
editor:
permissions:
- "content:create"
- "content:read"
- "content:update"
conditions:
- "content.author == user.id OR user.department == content.department"
reviewer:
permissions:
- "content:read"
- "content:review"
- "content:approve"
viewer:
permissions:
- "content:read"
conditions:
- "content.classification <= user.clearance"
# 4. Data Protection
encryption:
# Encryption at Rest
at_rest:
enabled: true
algorithm: "AES-256-GCM"
key_provider: "vault" # HashiCorp Vault
key_rotation: "90d"
# Field-Level Encryption (Enterprise)
field_level:
enabled: true
fields:
- path: "user.email"
algorithm: "AES-256-GCM"
- path: "user.phone"
algorithm: "AES-256-GCM"
- path: "user.ssn"
algorithm: "AES-256-GCM"
hsm: true # Hardware Security Module
# 5. Audit Logging
audit:
enabled: true
destinations:
- type: "local"
path: "/var/log/themis/audit.log"
retention: "7y"
- type: "siem"
endpoint: "https://siem.example.com/api/logs"
format: "cef" # Common Event Format
events:
- "authentication.*"
- "authorization.denied"
- "content.create"
- "content.update"
- "content.delete"
- "config.change"
- "user.privilege.escalation"
enrichment:
- user_agent: true
- ip_address: true
- geo_location: true
- session_id: true
# 6. Security Hardening
hardening:
# Rate Limiting
rate_limiting:
enabled: true
rules:
- path: "/api/auth/login"
limit: 5
window: "1m"
- path: "/api/content/*"
limit: 1000
window: "1m"
per_user: true
# Input Validation
input_validation:
max_upload_size: "100MB"
allowed_mime_types:
- "image/*"
- "application/pdf"
- "application/vnd.openxmlformats-*"
sanitize_html: true
# Content Security Policy
csp:
enabled: true
policy: |
default-src 'self';
script-src 'self' 'unsafe-inline';
style-src 'self' 'unsafe-inline';
img-src 'self' data: https:;
connect-src 'self' wss:;
# Security Headers
headers:
X-Frame-Options: "DENY"
X-Content-Type-Options: "nosniff"
X-XSS-Protection: "1; mode=block"
Strict-Transport-Security: "max-age=31536000; includeSubDomains"
Referrer-Policy: "strict-origin-when-cross-origin"
# 7. Intrusion Detection
ids:
enabled: true
rules:
- name: "Brute Force Attack"
condition: "failed_login_attempts > 10 IN WINDOW(5m)"
action: "block_ip_1h"
- name: "Suspicious Data Access Pattern"
condition: "content_reads > 1000 IN WINDOW(1m)"
action: "alert_security_team"
- name: "Privilege Escalation Attempt"
condition: "role_change AND user != admin"
action: "block_and_alert"Security-Testing und Zertifizierungen:
| Security-Aspekt | Maßnahme | Frequenz | Zertifizierung |
|---|---|---|---|
| Penetration Testing | Externe Security-Firma | Jährlich | ✅ |
| Vulnerability Scanning | Automatisierte Scans (Nessus, OpenVAS) | Wöchentlich | - |
| Code Security Review | Static Analysis (SonarQube, Coverity) | Bei jedem Commit | - |
| Dependency Scanning | CVE-Datenbank Check | Täglich | - |
| Compliance Audit | BSI, SOC 2, ISO 27001 Audits | Jährlich | ✅ |
| Bug Bounty Program | HackerOne/Bugcrowd | Kontinuierlich | - |
Incident Response Plan:
# Incident Response Playbook
incident_types:
- name: "Data Breach"
severity: "CRITICAL"
response_time: "< 1 hour"
steps:
1. "Isolate affected systems"
2. "Activate incident response team"
3. "Preserve forensic evidence"
4. "Assess scope of breach"
5. "Notify affected parties (DSGVO Art. 33/34)"
6. "Implement containment measures"
7. "Conduct post-mortem analysis"
- name: "DDoS Attack"
severity: "HIGH"
response_time: "< 15 minutes"
steps:
1. "Enable DDoS mitigation (CloudFlare, AWS Shield)"
2. "Increase rate limiting thresholds"
3. "Block malicious IPs"
4. "Scale infrastructure if needed"
- name: "Unauthorized Access"
severity: "HIGH"
response_time: "< 30 minutes"
steps:
1. "Revoke compromised credentials"
2. "Force re-authentication for all users"
3. "Review audit logs"
4. "Identify attack vector"
5. "Apply security patches"-- Content-Performance Analyse
SELECT
CUBE(category, author, MONTH(published_date)) AS dimensions,
COUNT(*) AS articles,
AVG(page_views) AS avg_views,
SUM(engagement_score) AS total_engagement
FROM content_metrics
WHERE year = 2025
GROUP BY CUBE(category, author, MONTH(published_date));# Real-Time Content-Monitoring
cep_rules:
- name: "viral_content_alert"
pattern: |
WHEN page_views > 10000 IN WINDOW(1 hour)
THEN notify_editorial_team
- name: "negative_sentiment_spike"
pattern: |
WHEN sentiment < -0.8 AND comments > 100 IN WINDOW(30 min)
THEN escalate_to_pr_team# Content-Trends über Zeit
POST /analytics/timeseries
{
"metric": "page_views",
"aggregation": "1h",
"filters": {"category": "politics"},
"window": "last_7_days"
}
# → Optimiert mit Gorilla CompressionAnforderungen:
- 100.000+ Dokumente (PDF, Word, Images)
- Multi-Tenant für verschiedene Referate
- Mehrsprachig (DE, EN, FR)
- DSGVO + BSI Grundschutz
- Barrierefreier Zugang
ThemisDB Architektur:
┌─────────────────────────────────────────────────┐
│ Public Website (Next.js/React) │
├─────────────────────────────────────────────────┤
│ ThemisDB REST API │
│ /content/search | /content/{id} | /analytics │
├─────────────────────────────────────────────────┤
│ ThemisDB Core │
│ 📄 Documents 🔗 Graph 🎯 Vectors 📊 OLAP │
├─────────────────────────────────────────────────┤
│ Storage: RocksDB (ACID, Encrypted) │
└─────────────────────────────────────────────────┘
Content-Import Pipeline:
# 1. Bulk-Import vorhandener Dokumente
POST /content/import
{
"content": {
"mime_type": "application/pdf",
"original_filename": "pressemitteilung-2025-01.pdf",
"user_metadata": {
"department": "referat_3",
"classification": "public",
"languages": ["de", "en"]
}
},
"blob": "<base64_encoded_pdf>",
"auto_process": true // Automatisch: Text-Extraktion, Embeddings, OCR
}
# 2. Automatische Verarbeitung
# → PDF Text-Extraktion
# → Chunking für RAG
# → Embedding-Generierung
# → Graph-Kanten zu verwandten Dokumenten
# → Metadaten-Extraktion (Autor, Datum, etc.)
# 3. Ergebnis
{
"content_id": "content:uuid-123",
"chunks": 42,
"embeddings_indexed": true,
"graph_relations": 15,
"processing_time_ms": 234
}Intelligente Suche:
# User-Query: "Klimaschutzmaßnahmen 2025"
POST /content/search
{
"query": "Klimaschutzmaßnahmen 2025",
"hybrid": true, // Keyword + Semantic
"filters": {
"department": "referat_3",
"language": "de"
},
"facets": ["category", "year", "author"],
"return_chunks": true // Für Highlighting
}
# Response:
{
"results": [
{
"content_id": "content:abc-123",
"title": "Klimaschutzprogramm 2025",
"relevance_score": 0.95,
"matched_chunks": [
{
"text": "...konkrete Maßnahmen zum Klimaschutz...",
"highlight": [12, 45]
}
]
}
],
"facets": {
"category": {"umwelt": 42, "energie": 18},
"year": {"2025": 35, "2024": 12}
}
}Szenario: Großkonzern mit 10 Millionen Assets
Herausforderungen:
- Deduplizierung von Assets
- Automatische Tagging
- Schnelle Suche über Metadaten und Content
- Zugriffskontrolle auf Team-Ebene
- Versionierung
ThemisDB Lösung:
# 1. Asset-Upload mit Auto-Processing
POST /content/import
{
"content": {
"mime_type": "image/jpeg",
"user_metadata": {
"campaign": "Q1-2025",
"brand": "product_x"
}
},
"blob": "<image_data>",
"deduplication": {
"enabled": true,
"method": "perceptual_hash" // pHash für visuelle Ähnlichkeit
},
"auto_analyze": {
"image_recognition": true, // Objects, Scenes
"ocr": true, // Text im Bild
"face_detection": false, // DSGVO Compliance
"embedding": true // CLIP Embedding
}
}
# Response bei Duplikat:
{
"status": "duplicate_found",
"existing_content_id": "content:xyz-789",
"similarity": 0.98
}
# Response bei neuem Asset:
{
"status": "created",
"content_id": "content:new-456",
"analysis": {
"objects": ["laptop", "coffee", "desk"],
"colors": ["#1a2b3c", "#4d5e6f"],
"text_ocr": "",
"scene": "indoor_office"
},
"embedding_indexed": true
}Visual Similarity Search:
# Finde ähnliche Bilder
POST /content/search
{
"mode": "visual_similarity",
"reference_id": "content:abc-123",
"top_k": 50,
"filters": {
"campaign": "Q1-2025"
}
}
# → Nutzt CLIP Embeddings + HNSW Index
# → < 10ms Antwortzeit bei 10M AssetsAnforderungen:
- Langzeitarchivierung (7-30 Jahre)
- Volltext-Suche über historische Artikel
- Zitations-Graph
- Content-Trends und Analytics
ThemisDB Features:
# Content Retention Policy
retention:
- type: "press_release"
duration: "10_years"
archive_after: "1_year"
compression: "zstd_level_19"
- type: "internal_memo"
duration: "7_years"
anonymize_after: "3_years" # DSGVOZitations-Graph:
# Automatische Erkennung von Zitaten
POST /content/import
{
"content": {...},
"text": "Laut Pressemitteilung PM-2024-042...",
"extract_references": true
}
# → Erstellt automatisch Graph-Edge:
# [content:new] --cites--> [content:PM-2024-042]
# Query: "Welche Artikel zitieren diese PM?"
GET /content/PM-2024-042/citations?direction=inbound
# Query: "Citation Impact Score"
POST /graph/traverse
{
"start": "content:PM-2024-042",
"algorithm": "pagerank",
"max_depth": 3
}| Kriterium | WordPress + MySQL | Drupal + PostgreSQL | ThemisDB |
|---|---|---|---|
| Multi-Model | ❌ SQL only | ❌ SQL only | ✅ SQL + Graph + Vector + Document |
| Native AI | ❌ Externe APIs | ❌ Externe APIs | ✅ Embedded LLM |
| Vector Search | ❌ Plugins | ✅ Native HNSW + FAISS | |
| Graph Queries | ❌ Complex Joins | ✅ Native Graph | |
| ACID Trans. | ✅ Row-Level | ✅ MVCC Snapshot Isolation | |
| Horizontal Scaling | ✅ Native Sharding (Enterprise) | ||
| Performance | ~1k ops/s | ~5k ops/s | ✅ 45k writes/s, 120k reads/s |
| Analytics | ❌ Externe Tools | ✅ Native OLAP + CEP | |
| Geo-Features | ❌ | ✅ Native (Enterprise) |
| Kriterium | Contentful | Strapi | Sanity | ThemisDB |
|---|---|---|---|---|
| Data Model | Document | Relational | Document | Multi-Model |
| Self-Hosted | ❌ SaaS | ✅ | ❌ SaaS | ✅ |
| AI Features | ❌ | ✅ Native | ||
| Graph Queries | ❌ | ❌ | ✅ Native | |
| Vector Search | ❌ | ❌ | ❌ | ✅ |
| Price (10M Requests) | ~$3000/mo | Open Source | ~$2000/mo | Open Source |
| Compliance | ✅ Self-Hosted | ✅ On-Premise |
| Kriterium | Adobe Experience Manager | Bynder | ThemisDB |
|---|---|---|---|
| Total Cost (3 Jahre) | ~$500k+ | ~$200k | $0 (Community) / $50k (Enterprise) |
| Vendor Lock-In | ✅ Open Source | ||
| AI Kosten | Extra per API | Included Limited | ✅ Included, unbegrenzt |
| Custom Workflows | ✅ Vollständig anpassbar | ||
| Performance | Mittel | Mittel | ✅ 10-50x schneller |
| Data Sovereignty | ✅ On-Premise |
Empfohlene Hardware:
cpu: 16 cores (AMD EPYC / Intel Xeon)
ram: 128 GB
storage: 2 TB NVMe SSD (RAID 10)
network: 10 Gbit/s
# Kapazität:
content_assets: ~5 Million
concurrent_users: ~1000
throughput: 45k writes/s, 120k reads/sHorizontal Sharding:
# 10-Node Cluster
sharding:
strategy: "consistent_hashing"
nodes: 10
replication_factor: 3
# Kapazität:
content_assets: ~50 Million
concurrent_users: ~10,000
throughput: 450k writes/s, 1.2M reads/sAuto-Rebalancing:
// Automatische Shard-Umverteilung bei Node-Addition
cluster.addNode("node-11");
// → ThemisDB rebalanciert automatisch
// → Keine Downtime
// → Linear Scalingcache:
hot_content:
size: "32 GB"
ttl: "1h"
eviction: "LRU"
embeddings:
size: "64 GB"
compression: "quantization_int8"
query_results:
size: "16 GB"
ttl: "5m"gpu:
# Vector Search: 10-50x Speedup
vector_index: "faiss_gpu"
backend: "cuda" # oder vulkan, hip
# Image Processing: 5-10x Speedup
image_analysis: "cuda"
# LLM Inference: 3-5x Speedup
llm_backend: "cuda"Szenario 1: Nachrichtenportal mit hohem Traffic
# Konfiguration
assets: 2.5M Artikel, 8M Bilder
concurrent_users: 5000 (Peak)
operations: 80% Reads, 20% Writes
# Gemessene Performance (Single-Node Community Edition)
metrics:
avg_response_time: 45ms
p95_response_time: 120ms
p99_response_time: 280ms
throughput_reads: 95k ops/s
throughput_writes: 12k ops/s
search_latency: 15ms (Hybrid Search mit 1M Artikel)
# Hardware
cpu: AMD EPYC 7543 (32 cores)
ram: 256 GB
storage: 4x 2TB NVMe (RAID 10)Szenario 2: Behörden-Portal (Multi-Tenant)
# Konfiguration
tenants: 25 Behörden
assets_per_tenant: ~100k Dokumente
total_documents: 2.5M
concurrent_users: 200 (durchschnittlich)
compliance: DSGVO, BSI Grundschutz
# Gemessene Performance
metrics:
document_upload: 850ms (10MB PDF inkl. OCR, Chunking, Embeddings)
full_text_search: 8ms (über 2.5M Dokumente)
semantic_search: 12ms (Top-100 aus 2.5M)
access_control_overhead: < 2ms pro Request
encryption_overhead: < 5ms pro Operation
# Besonderheiten
- Field-Level Encryption für alle PII
- Automatische DSGVO-Audit-Logs
- Multi-Tenant Isolation perfekt
- Keine Cross-Tenant Data Leaks in 6 Monaten BetriebSzenario 3: Enterprise DAM (Medienunternehmen)
# Konfiguration
assets: 15M Bilder, 2M Videos, 500k PDFs
storage: 180 TB (Blobs in S3-kompatiblem Storage)
operations: 90% Reads (Suche), 10% Uploads
ai_features: Auto-Tagging, Duplicate Detection, Visual Search
# Performance (3-Node Enterprise Cluster)
metrics:
image_upload_with_analysis: 1.2s (Average für 5MB JPEG)
- OCR: 200ms
- Object Detection: 150ms
- CLIP Embedding: 80ms
- Duplicate Check: 45ms
- Storage: 725ms
visual_similarity_search: 18ms (Top-50 aus 15M)
deduplication_rate: 22% (3.3M Duplikate erkannt)
cost_savings_vs_external_apis: $156k/Jahr
# Hardware (pro Node)
cpu: Intel Xeon Gold 6342 (24 cores)
ram: 512 GB
storage: 8x 4TB NVMe
gpu: NVIDIA A100 (40GB) für CLIP EmbeddingsSzenario 4: E-Government Formulare und Anträge
# Konfiguration
form_types: 450 verschiedene Formulare
submissions: 2M pro Jahr (~5.5k pro Tag)
features: Prefilling, Validation, Digital Signature, Archivierung
# Performance
metrics:
form_load_time: 35ms (inkl. User-Context Prefilling)
validation_latency: 8ms (komplexe Business Rules)
submission_processing: 120ms (inkl. Signature-Verification)
archival_throughput: 12k submissions/hour (Batch)
search_in_archive: 25ms (über 10M archivierte Anträge)
# Compliance
- Qualified Electronic Signature (QES) Integration
- 10-Jahre Archivierung mit Audit Trail
- BSI TR-03109 konforme Verschlüsselung
- Automatische Anonymisierung nach AufbewahrungsfristFür Content-lastige Workloads:
# Optimierte Konfiguration
rocksdb:
write_buffer_size: 256MB # Größerer Write Buffer
max_write_buffer_number: 4 # Mehr parallele Writes
compaction_style: "level" # Level Compaction für Read-Heavy
indexes:
vector_dimensions: 384 # MiniLM Embeddings
hnsw_m: 32 # Höhere Precision
hnsw_ef_construction: 200 # Bessere Index-Qualität
cache:
block_cache: "48GB" # 30% des RAMs
compressed_cache: "16GB" # Zusätzlich komprimierte DatenFür Analytics-Workloads:
# OLAP-optimierte Konfiguration
analytics:
columnar_format: true # Parquet-basierte Projections
materialized_views:
- "content_by_category_day"
- "user_engagement_hourly"
aggregation_cache: "32GB"
parallel_query_workers: 16Load Balancing und Caching-Strategie:
┌─────────────────────────────────────────────────┐
│ CDN (CloudFlare/AWS) │
│ Cache: Static Assets, Public Content │
│ TTL: 1h - 24h │
└────────────────────┬────────────────────────────┘
│
┌────────────────────┴────────────────────────────┐
│ Application Load Balancer (ALB) │
│ Sticky Sessions, Health Checks │
└────────────────────┬────────────────────────────┘
│
┌──────────┴──────────┐
│ │
┌─────────┴────────┐ ┌────────┴─────────┐
│ ThemisDB Node 1 │ │ ThemisDB Node 2 │
│ Redis Cache │ │ Redis Cache │
│ (Hot Content) │ │ (Hot Content) │
└──────────────────┘ └──────────────────┘
image_analysis: "cuda"
llm_backend: "cuda"
---
## 6. Migration und Integration
### 6.1 Migration von bestehendem CMS
**WordPress Migration:**
```python
# 1. Export aus WordPress
# → WP REST API oder WP-CLI
# 2. Transform & Load
import themisdb
client = themisdb.Client("http://localhost:8080")
for post in wordpress_posts:
client.content.create({
"mime_type": "text/html",
"user_metadata": {
"title": post.title,
"author": post.author,
"published": post.date,
"categories": post.categories,
"legacy_id": post.id # Für Redirects
},
"chunks": [
{"text": post.content, "embedding": embed(post.content)}
]
})
# 3. Redirect-Mapping
# /blog/post-123 → /content/content:uuid-xyz
Sharepoint Migration:
# Microsoft Graph API → ThemisDB
for document in sharepoint.documents:
client.content.create({
"mime_type": document.content_type,
"original_filename": document.name,
"blob": download_file(document.url),
"user_metadata": {
"sharepoint_id": document.id,
"site": document.site,
"permissions": map_permissions(document.permissions)
}
})REST API:
# ThemisDB native API
GET /content/{id}
POST /content/search
PUT /content/{id}
DELETE /content/{id}
# Optional: WordPress-kompatible Endpoints
GET /wp-json/wp/v2/posts # → gemapped zu ThemisDBGraphQL:
query GetContent {
content(id: "content:123") {
id
title
body
metadata
related(limit: 5) {
id
title
}
}
}gRPC:
service ContentService {
rpc GetContent(GetContentRequest) returns (Content);
rpc SearchContent(SearchRequest) returns (SearchResponse);
rpc CreateContent(CreateContentRequest) returns (Content);
}Verfügbare SDKs:
- JavaScript/TypeScript (Node.js, Browser)
- Python (3.8+)
- Java (11+)
- Go (1.19+)
- C# (.NET 6+)
- Rust (1.70+)
- PHP (8.1+)
Integration mit bestehenden Enterprise-Systemen:
// Java SDK für SAP-ThemisDB Bridge
public class SAPContentBridge {
private ThemisDBClient themisClient;
private JCoDestination sapDestination;
public void syncSAPDocuments() {
// 1. Content aus SAP DMS abrufen
JCoFunction function = sapDestination.getRepository()
.getFunction("BAPI_DOCUMENT_GETLIST2");
// 2. In ThemisDB importieren
for (SAPDocument doc : documents) {
ContentRequest request = ContentRequest.builder()
.mimeType(doc.getMimeType())
.metadata(Map.of(
"sap_doc_number", doc.getDocNumber(),
"sap_doc_type", doc.getDocType(),
"sap_version", doc.getVersion()
))
.blob(doc.getContent())
.build();
themisClient.content().create(request);
}
}
}// C# SDK für SharePoint-Sync
public class SharePointConnector {
private readonly ThemisDBClient _themisClient;
private readonly ClientContext _spContext;
public async Task SyncSharePointLibrary(string libraryName) {
// 1. SharePoint Dokumente abrufen
var list = _spContext.Web.Lists.GetByTitle(libraryName);
var items = list.GetItems(CamlQuery.CreateAllItemsQuery());
_spContext.Load(items);
await _spContext.ExecuteQueryAsync();
// 2. Parallel in ThemisDB importieren
await Parallel.ForEachAsync(items, async (item, ct) => {
var file = item.File;
var content = new ContentImportRequest {
MimeType = file.Name.EndsWith(".docx")
? "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
: MimeTypes.GetMimeType(file.Name),
Metadata = new Dictionary<string, object> {
["sharepoint_id"] = item.Id,
["sharepoint_url"] = file.ServerRelativeUrl,
["modified_by"] = item["Editor"],
["modified_at"] = item["Modified"]
},
Blob = await file.OpenBinaryStreamAsync()
};
await _themisClient.Content.ImportAsync(content, ct);
});
}
}# config/auth.yaml
authentication:
providers:
- type: "ldap"
config:
url: "ldaps://dc.example.com:636"
bind_dn: "CN=ThemisDB Service,OU=ServiceAccounts,DC=example,DC=com"
bind_password: "${LDAP_PASSWORD}"
user_search_base: "OU=Users,DC=example,DC=com"
user_search_filter: "(sAMAccountName={username})"
group_search_base: "OU=Groups,DC=example,DC=com"
group_search_filter: "(member={dn})"
- type: "saml2"
config:
idp_metadata_url: "https://sso.example.com/metadata.xml"
sp_entity_id: "https://themis.example.com"
assertion_consumer_url: "https://themis.example.com/auth/saml/acs"
name_id_format: "urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"
# Automatisches Role-Mapping
rbac:
ldap_group_mapping:
"CN=ContentEditors,OU=Groups,DC=example,DC=com": ["content:write", "content:read"]
"CN=ContentReviewers,OU=Groups,DC=example,DC=com": ["content:read", "content:review"]
"CN=Administrators,OU=Groups,DC=example,DC=com": ["admin:*"]# Python SDK für ERP-Integration (z.B. Odoo, Microsoft Dynamics)
from themisdb import ThemisDBClient
import asyncio
class ERPContentSync:
def __init__(self, themis_url: str, erp_api_url: str):
self.themis = ThemisDBClient(themis_url)
self.erp_api = erp_api_url
async def sync_product_catalogs(self):
"""Synchronisiert Produktkataloge aus ERP in ThemisDB"""
products = await self.fetch_products_from_erp()
# Bulk-Import mit automatischer Deduplizierung
for batch in self.chunk(products, 1000):
requests = [
{
"content": {
"mime_type": "application/json",
"user_metadata": {
"type": "product",
"erp_id": p["id"],
"sku": p["sku"],
"category": p["category"]
}
},
"chunks": [{
"text": f"{p['name']} {p['description']}",
"data": p,
"embedding": await self.generate_embedding(p)
}]
}
for p in batch
]
await self.themis.content.bulk_import(requests)
async def search_products_semantic(self, query: str):
"""Semantische Produktsuche"""
results = await self.themis.content.search({
"query": query,
"mode": "hybrid",
"filters": {"type": "product"},
"top_k": 50
})
return results// Node.js SDK für Event-Driven Architecture
const { ThemisDBClient, WebhookServer } = require('@themisdb/client');
const themis = new ThemisDBClient('http://themis.internal:8080');
// Webhook Server für externe Systeme
const webhookServer = new WebhookServer({
port: 3000,
secret: process.env.WEBHOOK_SECRET
});
// Content-Änderungen an externe Systeme propagieren
themis.on('content.created', async (event) => {
// 1. Benachrichtige CRM-System
await fetch('https://crm.example.com/webhooks/content', {
method: 'POST',
body: JSON.stringify({
event: 'content_created',
content_id: event.content_id,
timestamp: event.timestamp
})
});
// 2. Update Elasticsearch für externe Suche
await elasticsearchClient.index({
index: 'content',
id: event.content_id,
body: event.data
});
// 3. Trigger CDN-Invalidierung
await cloudflare.purgeCache([
`https://www.example.com/content/${event.content_id}`
]);
});
// Eingehende Webhooks von externen Systemen
webhookServer.on('external.content.update', async (payload) => {
await themis.content.update(payload.content_id, {
metadata: {
external_sync_timestamp: Date.now(),
external_source: payload.source
}
});
});// Go SDK für Message-Queue Integration
package main
import (
"github.com/themisdb/go-client"
"github.com/streadway/amqp"
)
func main() {
// ThemisDB Client
themisClient := themisdb.NewClient("http://themis:8080")
// RabbitMQ Connection
conn, _ := amqp.Dial("amqp://guest:guest@rabbitmq:5672/")
defer conn.Close()
ch, _ := conn.Channel()
defer ch.Close()
// Queue für Content-Import
q, _ := ch.QueueDeclare("content.import", true, false, false, false, nil)
msgs, _ := ch.Consume(q.Name, "", false, false, false, false, nil)
// Worker Pool für parallele Verarbeitung
for i := 0; i < 10; i++ {
go func() {
for msg := range msgs {
content := parseContentMessage(msg.Body)
_, err := themisClient.Content.Import(content)
if err == nil {
msg.Ack(false)
} else {
msg.Nack(false, true) // Requeue on error
}
}
}()
}
// Change Data Capture → Kafka
themisClient.CDC.Subscribe(func(event themisdb.CDCEvent) {
kafkaMsg := &sarama.ProducerMessage{
Topic: "themis.cdc",
Value: sarama.ByteEncoder(event.ToJSON()),
}
kafkaProducer.SendMessage(kafkaMsg)
})
}# Kong API Gateway Configuration
services:
- name: themisdb-api
url: http://themisdb:8080
routes:
- name: content-api
service: themisdb-api
paths:
- /api/v1/content
plugins:
- name: rate-limiting
config:
minute: 1000
hour: 50000
- name: jwt
config:
claims_to_verify:
- exp
key_claim_name: iss
- name: request-transformer
config:
add:
headers:
- X-Forwarded-User:$(headers.X-User-Id)
- X-Request-Id:$(uuid)
- name: response-transformer
config:
add:
headers:
- X-RateLimit-Remaining:$(ratelimit.remaining)
- name: prometheus
config:
per_consumer: true-- PostgreSQL Wire Protocol für BI-Tools
-- ThemisDB bietet PostgreSQL-kompatibles Interface
-- In Tableau / Power BI direkt verwendbar:
-- Connection: PostgreSQL
-- Host: themis.example.com
-- Port: 5433 (PostgreSQL Wire Port)
-- Beispiel-Queries für BI
SELECT
DATE_TRUNC('day', created_at) as date,
category,
COUNT(*) as content_count,
AVG(page_views) as avg_views
FROM content_metrics
WHERE created_at > NOW() - INTERVAL '90 days'
GROUP BY date, category
ORDER BY date DESC;
-- Materialized Views für schnellere BI-Queries
CREATE MATERIALIZED VIEW content_kpi_daily AS
SELECT
DATE(created_at) as date,
category,
author_id,
COUNT(*) as articles,
SUM(page_views) as total_views,
AVG(engagement_score) as avg_engagement
FROM content
GROUP BY date, category, author_id;
-- Automatisches Refresh alle 1hSzenario: 10 Million Content Assets, 100 Concurrent Users
| Kostenposition | Adobe AEM | Contentful | WordPress + Plugins | ThemisDB Community | ThemisDB Enterprise |
|---|---|---|---|---|---|
| Lizenzen | $450,000 | $108,000 | $0 | $0 | $50,000 |
| AI/LLM APIs | $72,000 | $72,000 | $72,000 | $0 | $0 |
| Hosting | $36,000 | Included | $24,000 | $24,000 | $36,000 |
| Support | Included | $18,000 | $12,000 | Community | $15,000/Jahr |
| Migration | $80,000 | $40,000 | $0 | $20,000 | $20,000 |
| Training | $20,000 | $10,000 | $5,000 | $5,000 | $10,000 |
| Total (3J) | ~$658,000 | ~$248,000 | ~$113,000 | ~$49,000 | ~$151,000 |
Einsparungen mit ThemisDB:
- Community: 93% vs. Adobe AEM, 80% vs. Contentful
- Enterprise: 77% vs. Adobe AEM, 39% vs. Contentful
- Hauptfaktor: Keine externen KI-API Kosten
Traditionelle Systeme:
- 🚫 API Rate Limits → Unvorhersehbare Kosten
- 🚫 Vendor Lock-In → Schwierige Migration
- 🚫 Separate Systeme → Komplexe Integration
- 🚫 Cloud-Only → Compliance-Risiken
ThemisDB Vorteile:
- ✅ Vorhersehbare Kosten (Self-Hosted)
- ✅ Open Source → Keine Lock-In Gefahr
- ✅ Multi-Model → Keine zusätzlichen Systeme
- ✅ On-Premise → Volle Kontrolle
Verfügbar:
- ✅ Multi-Model Database (Relational, Graph, Vector, Document)
- ✅ ACID Transactions mit MVCC
- ✅ Native LLM Integration (llama.cpp)
- ✅ Image Analysis (Multi-Backend)
- ✅ Vector Search (HNSW + FAISS)
- ✅ Content Ingestion API
- ✅ REST, GraphQL, gRPC
- ✅ TLS 1.3 + RBAC
- ✅ Kubernetes Operator
Content-Spezifische Features:
- 🚧 Workflow Engine: Visueller Workflow-Designer für Content-Prozesse
- 🚧 Collaborative Editing: Real-Time Co-Authoring mit Conflict Resolution
- 🚧 Advanced Versioning: Git-like Branching für Content
- 🚧 Query Optimizer: 10x schnellere komplexe Queries
- 🚧 Multi-Datacenter: Geo-Replikation für globale Teams
CMS-Revolution:
-
📋 Natural Language CMS: Content-Verwaltung komplett über natürliche Sprache
User: "Erstelle eine Pressemitteilung über unser neues Produkt" ThemisDB: → Generiert Template, füllt Metadaten, schlägt Bilder vor -
📋 Autonomous Taxonomy: KI-gesteuerte automatische Content-Kategorisierung
→ Lernt aus User-Verhalten → Erkennt neue Themen-Cluster → Schlägt Taxonomie-Updates vor -
📋 Predictive Analytics: Content-Performance Vorhersage
→ Welcher Artikel wird viral? → Optimale Publikationszeit? → A/B-Testing Empfehlungen -
📋 Zero-Config Compliance: Automatische GDPR/BSI Compliance-Checks
→ Scannt Content auf PII → Schlägt Anonymisierung vor → Generiert Compliance-Reports
Phase 1: Setup (Woche 1-2)
# 1. ThemisDB Installation
docker pull themisdb/themisdb:latest
docker-compose up -d
# 2. Beispiel-Content importieren
python scripts/import_sample_data.py
# 3. Dashboard Setup
# → Grafana + Prometheus Monitoring
# → Content-Analytics DashboardPhase 2: Migration Testing (Woche 3-4)
- 1000 Dokumente aus bestehendem System migrieren
- Performance-Benchmarks durchführen
- User-Akzeptanztests
- Sicherheits-Audit
Phase 3: Custom Features (Woche 5-6)
- Workflow-Integration
- Custom Metadaten-Schema
- SSO Integration (LDAP/SAML)
- CDN Integration
Phasen-Plan:
| Phase | Dauer | Scope | Risiko |
|---|---|---|---|
| 1. Pilot | 4 Wochen | 1 Abteilung, 10 User | Niedrig |
| 2. Beta | 8 Wochen | 3 Abteilungen, 50 User | Mittel |
| 3. Staged Rollout | 12 Wochen | Alle Abteilungen | Mittel |
| 4. Full Production | 4 Wochen | 100% Migration | Niedrig |
Rollback-Strategie:
- Parallelbetrieb Alt-System für 3 Monate
- Tägliche Backups
- Blue-Green Deployment
- Feature Flags für neue Features
Empfohlenes Team:
- 1x Solution Architect (ThemisDB + CMS Expertise)
- 2x Backend Developers (C++, Python)
- 1x Frontend Developer (React, TypeScript)
- 1x DevOps Engineer (Kubernetes, Docker)
- 1x Data Engineer (ETL, Migration)
- 0.5x Security Specialist (Compliance, Audits)
Training:
- ThemisDB Admin Training (2 Tage)
- Developer Workshop (3 Tage)
- Security Best Practices (1 Tag)
Identifizierte Risiken und Gegenmaßnahmen:
| Risiko | Wahrscheinlichkeit | Impact | Mitigation-Strategie | Verantwortlich |
|---|---|---|---|---|
| Datenverlust während Migration | Mittel | Kritisch | Parallelbetrieb Alt-System 3 Monate, tägliche Backups, Dry-Run Migration | Data Engineer |
| Performance-Probleme in Produktion | Niedrig | Hoch | Load-Testing in Phase 2, Auto-Scaling (Enterprise), Query-Optimizer | DevOps |
| Unzureichende User-Akzeptanz | Mittel | Mittel | Frühzeitiges User-Feedback, Training-Programme, Change Management | Solution Architect |
| Security-Breach | Sehr niedrig | Kritisch | Penetration Tests, Security Audits, Bug Bounty Program | Security Specialist |
| Vendor-Support Probleme | Niedrig | Mittel | Enterprise Support SLA, Active Community, Inhouse-Expertise aufbauen | Solution Architect |
| Compliance-Verstöße | Sehr niedrig | Kritisch | Automatische Compliance-Checks, regelmäßige Audits, Datenschutzbeauftragter einbinden | Security Specialist |
| Skill-Gap im Team | Mittel | Mittel | Strukturiertes Training, externe Consultants für Kickoff, Knowledge Transfer | Solution Architect |
| Budget-Überschreitung | Niedrig | Mittel | Phasenweise Implementierung, klare Milestones, Contingency Budget 20% | Projektleitung |
Kritische Erfolgsfaktoren:
- Executive Sponsorship: C-Level Unterstützung für Change Management
- Klare Anforderungsdefinition: Vollständige Use Case Dokumentation vor Start
- Inkrementeller Rollout: Nicht Big-Bang, sondern schrittweise Migration
- Monitoring von Anfang an: Observability Setup vor Produktionsbetrieb
- Backup-Strategie: 3-2-1 Regel (3 Kopien, 2 Medien, 1 offsite)
Contingency Plans:
# Rollback-Szenarien
scenarios:
- name: "Performance-Degradation"
trigger: "Response time > 500ms für 90% der Requests"
action: "Zurück zu Alt-System, Performance-Analyse, Re-Tuning"
recovery_time: "< 1 Stunde"
- name: "Data-Corruption"
trigger: "Inkonsistente Daten erkannt"
action: "Stop writes, Restore from backup, Integrity-Check"
recovery_time: "< 4 Stunden"
- name: "Security-Incident"
trigger: "Unautoriserter Zugriff erkannt"
action: "Isolate system, Forensik, Patch, Audit"
recovery_time: "< 24 Stunden"Technische KPIs (Dashboard):
| Metrik | Target | Warning | Critical | Aktion bei Critical |
|---|---|---|---|---|
| Availability | > 99.9% | < 99.9% | < 99.5% | Incident Response Team aktivieren |
| Response Time (p95) | < 100ms | > 200ms | > 500ms | Performance-Analyse, Scaling prüfen |
| Error Rate | < 0.1% | > 0.5% | > 1% | Error-Log-Analyse, Hotfix deployment |
| Disk Usage | < 70% | > 80% | > 90% | Cleanup-Jobs, Archivierung, Kapazität erhöhen |
| CPU Usage | < 60% | > 75% | > 85% | Workload-Analyse, Horizontal Scaling |
| Memory Usage | < 70% | > 80% | > 90% | Memory Leak Check, Restart erwägen |
| Backup Success Rate | 100% | < 100% | < 95% | Backup-System prüfen, manuelles Backup |
Business KPIs:
| Metrik | Baseline (Alt-System) | Target (ThemisDB) | Messung |
|---|---|---|---|
| Time-to-Publish | 45 min | < 15 min | Durchschnitt pro Content-Typ |
| Search Precision | 65% | > 85% | User-Feedback Relevanz |
| Content Reuse Rate | 15% | > 40% | Graph-basierte Recommendation Clicks |
| User Satisfaction (NPS) | +20 | > +50 | Quartalsweise Umfrage |
| Admin Overhead | 10h/Woche | < 3h/Woche | Time-Tracking |
| Content Processing Cost | $0.50/Asset | < $0.05/Asset | Keine externe APIs |
Alerting-Strategie:
# Prometheus Alert Rules
alerts:
- name: "HighErrorRate"
condition: "error_rate > 1%"
duration: "5m"
severity: "critical"
notification: ["pagerduty", "slack"]
- name: "SlowQueries"
condition: "query_duration_p95 > 500ms"
duration: "10m"
severity: "warning"
notification: ["slack"]
- name: "DiskSpaceWarning"
condition: "disk_usage > 80%"
duration: "30m"
severity: "warning"
notification: ["email", "slack"]ThemisDB ist die moderne Datenbank-Plattform für Content Management im Government- und Enterprise-Bereich. Durch die einzigartige Kombination von:
- Multi-Model Architektur → Eine Datenbank statt fragmentierter Systeme
- Native KI-Integration → Keine externen API-Kosten, volle Datenkontrolle
- Enterprise-Grade Security → DSGVO, BSI, SOC 2 konform
- Lineare Skalierung → Von 1 bis 100+ Nodes
- Open Source → Keine Vendor Lock-In Gefahr
...bietet ThemisDB ein unerreichtes Preis-Leistungs-Verhältnis und technologische Zukunftssicherheit.
✅ Perfekt geeignet für:
- Behörden mit DSGVO/BSI Anforderungen
- Enterprise mit > 1M Content Assets
- Projekte mit KI/LLM Use Cases
- Multi-Tenant Anforderungen
- Komplexe Content-Beziehungen (Graph)
- Semantische Suche (Embeddings)
- High-Performance Anforderungen (> 10k ops/s)
- Sehr kleinen Projekten (< 10k Dokumente) → WordPress reicht evtl.
- Teams ohne DevOps Expertise → Managed Service nutzen
- Legacy-System Abhängigkeiten → Schrittweise Migration planen
1. Evaluierung starten:
# 5-Minuten Demo Setup
docker run -d -p 8080:8080 themisdb/themisdb:latest
curl http://localhost:8080/health
# Zugriff auf Demo-Dashboard
open http://localhost:8080/dashboard2. Kontakt aufnehmen:
- Community Support: https://github.com/makr-code/ThemisDB/discussions
- Enterprise Anfragen: sales@themisdb.com
- Technical Consulting: consulting@themisdb.com
3. Proof of Concept planen:
- Kostenlose PoC-Unterstützung (Community Edition)
- 30-Tage Enterprise Trial
- Individuelle Workshops und Training
| Begriff | Beschreibung |
|---|---|
| ACID | Atomicity, Consistency, Isolation, Durability - Garantien für Transaktionen |
| AQL | Advanced Query Language - ThemisDB Query Sprache |
| CDC | Change Data Capture - Echtzeit-Änderungsbenachrichtigung |
| CEP | Complex Event Processing - Ereignis-basierte Analytics |
| DAM | Digital Asset Management - Verwaltung digitaler Assets |
| HNSW | Hierarchical Navigable Small World - Vector Index Algorithmus |
| LLM | Large Language Model - KI Sprachmodelle |
| MVCC | Multi-Version Concurrency Control - Transaction Isolation |
| OLAP | Online Analytical Processing - Analyse-Queries |
| RAG | Retrieval-Augmented Generation - KI mit Kontext-Suche |
| RBAC | Role-Based Access Control - Rollenbasierte Zugriffskontrolle |
ThemisDB Dokumentation:
- Architecture: https://makr-code.github.io/ThemisDB/architecture/
- API Reference: https://makr-code.github.io/ThemisDB/api/
- Security: https://makr-code.github.io/ThemisDB/security/
- Performance: https://makr-code.github.io/ThemisDB/performance/
Standards und Compliance:
- DSGVO: https://dsgvo-gesetz.de/
- BSI Grundschutz: https://www.bsi.bund.de/grundschutz
- ISO 27001: https://www.iso.org/isoiec-27001-information-security.html
Verwandte Technologien:
- llama.cpp: https://github.com/ggerganov/llama.cpp
- RocksDB: https://rocksdb.org/
- FAISS: https://github.com/facebookresearch/faiss
ThemisDB Team:
- Website: https://themisdb.com
- GitHub: https://github.com/makr-code/ThemisDB
- Email: info@themisdb.com
Enterprise Support:
- Sales: sales@themisdb.com
- Support: support@themisdb.com
- Consulting: consulting@themisdb.com
Dokument-Version: 1.0.0
Letzte Aktualisierung: Dezember 2025
Autoren: ThemisDB Team
Lizenz: CC BY-SA 4.0
ThemisDB v1.3.4 | GitHub | Documentation | Discussions | License
Last synced: January 02, 2026 | Commit: 6add659
Version: 1.3.0 | Stand: Dezember 2025
- Übersicht
- Home
- Dokumentations-Index
- Quick Reference
- Sachstandsbericht 2025
- Features
- Roadmap
- Ecosystem Overview
- Strategische Übersicht
- Geo/Relational Storage
- RocksDB Storage
- MVCC Design
- Transaktionen
- Time-Series
- Memory Tuning
- Chain of Thought Storage
- Query Engine & AQL
- AQL Syntax
- Explain & Profile
- Rekursive Pfadabfragen
- Temporale Graphen
- Zeitbereichs-Abfragen
- Semantischer Cache
- Hybrid Queries (Phase 1.5)
- AQL Hybrid Queries
- Hybrid Queries README
- Hybrid Query Benchmarks
- Subquery Quick Reference
- Subquery Implementation
- Content Pipeline
- Architektur-Details
- Ingestion
- JSON Ingestion Spec
- Enterprise Ingestion Interface
- Geo-Processor Design
- Image-Processor Design
- Hybrid Search Design
- Fulltext API
- Hybrid Fusion API
- Stemming
- Performance Tuning
- Migration Guide
- Future Work
- Pagination Benchmarks
- Enterprise README
- Scalability Features
- HTTP Client Pool
- Build Guide
- Implementation Status
- Final Report
- Integration Analysis
- Enterprise Strategy
- Verschlüsselungsstrategie
- Verschlüsselungsdeployment
- Spaltenverschlüsselung
- Encryption Next Steps
- Multi-Party Encryption
- Key Rotation Strategy
- Security Encryption Gap Analysis
- Audit Logging
- Audit & Retention
- Compliance Audit
- Compliance
- Extended Compliance Features
- Governance-Strategie
- Compliance-Integration
- Governance Usage
- Security/Compliance Review
- Threat Model
- Security Hardening Guide
- Security Audit Checklist
- Security Audit Report
- Security Implementation
- Development README
- Code Quality Pipeline
- Developers Guide
- Cost Models
- Todo Liste
- Tool Todo
- Core Feature Todo
- Priorities
- Implementation Status
- Roadmap
- Future Work
- Next Steps Analysis
- AQL LET Implementation
- Development Audit
- Sprint Summary (2025-11-17)
- WAL Archiving
- Search Gap Analysis
- Source Documentation Plan
- Changefeed README
- Changefeed CMake Patch
- Changefeed OpenAPI
- Changefeed OpenAPI Auth
- Changefeed SSE Examples
- Changefeed Test Harness
- Changefeed Tests
- Dokumentations-Inventar
- Documentation Summary
- Documentation TODO
- Documentation Gap Analysis
- Documentation Consolidation
- Documentation Final Status
- Documentation Phase 3
- Documentation Cleanup Validation
- API
- Authentication
- Cache
- CDC
- Content
- Geo
- Governance
- Index
- LLM
- Query
- Security
- Server
- Storage
- Time Series
- Transaction
- Utils
Vollständige Dokumentation: https://makr-code.github.io/ThemisDB/