-
Notifications
You must be signed in to change notification settings - Fork 0
roadmap_overview
Version: 6.0
Stand: 20. Dezember 2025
Typ: Konsolidierte Gesamt-Roadmap
📌 Status Update Dezember 2025 - v1.3.0 RELEASED:
- ✅ v1.3.0 (Dezember 2025) - LLM Integration mit llama.cpp (optional)
- ✅ v1.2.0 (Dezember 2025) - Enterprise Features (Hypertables, Hybrid Search, FAISS)
- ✅ v1.1.0 (Dezember 2025) - Optimization Release
- ✅ Horizontale Skalierung (Phase 1-6) 100% abgeschlossen
- ✅ Replication (Leader-Follower + Multi-Master) 100% abgeschlossen
- ✅ RAID-like Redundanz (MIRROR, STRIPE, PARITY, GEO) 100% abgeschlossen
- ✅ GPU Acceleration (10 Backends: CUDA, Vulkan, HIP, etc.) 100% abgeschlossen
- ✅ CEP Streaming Analytics Engine 100% abgeschlossen
- ✅ OLAP Analytics (CUBE, ROLLUP, Window Functions) 100% abgeschlossen
- ✅ Client SDKs (7 Sprachen) 100% Feature-Parität erreicht
- ✅ Kubernetes Operator CRDs 100% abgeschlossen
- ✅ Content Processor Plugins (10+ Formate) 100% abgeschlossen
- ✅ P2P Gossip Protocol 100% abgeschlossen
- ✅ Auto-Rebalancing & Cloud Agent 100% abgeschlossen
🆕 v1.4.0 GEPLANT (Q1 2026) - Production Hardening:
- 🔧 Fokus: Query Optimizer v2, Performance Tuning, Production Readiness
- 🔧 Features: Advanced ML/GNN, Multi-datacenter, Real-time Materialized Views
- 🔧 Engineering Effort: 12-16 Wochen
- 📊 Impact: Production-grade reliability and scale
ThemisDB ist jetzt eine vollständig verteilte, cloud-native Datenplattform mit GPU-Beschleunigung und erweiterten Analytics-Funktionen.
Erreichte Kernziele (Q4 2025):
- v1.3.0 - LLM Integration - Optional llama.cpp Integration ✅
- v1.2.0 - Enterprise Features - Hypertables, Hybrid Search, FAISS ✅
- v1.1.0 - Optimization - Performance improvements ✅
- Horizontal Scaling - Multi-Node Sharding & Replication ✅ 100%
- Replication - Leader-Follower + Multi-Master ✅ 100%
- RAID-like Redundancy - Enterprise-grade Data Protection ✅ 100%
- GPU Acceleration - 10 Backends (CUDA/Vulkan/HIP/etc.) ✅ 100%
- Streaming Analytics - CEP Engine mit EPL ✅ 100%
- OLAP Analytics - CUBE, ROLLUP, Window Functions ✅ 100%
- Enterprise Features - Multi-Tenancy, Compliance ✅ 100%
- Client SDKs - 7 Sprachen mit Feature-Parität ✅ 100%
🆕 Nächste Ziele (Q1 2026 - v1.4.0):
- Query Optimizer v2 - Advanced optimization and execution strategies
- Production Hardening - Stability, reliability, and scale improvements
- Multi-Datacenter - Cross-region replication and deployment
- Advanced ML/GNN - Machine learning and graph neural network features
2025 (✅ RELEASED) 2026 Q1 (🚀 v1.4.0) 2026 Q2-Q3 (🌟 v1.5.0) 2026 Q4+ (🔮 v2.0.0)
──────────────────────────────────────────────────────────────────────────────────────────────────────────
│ │ │ │
│ ✅ v1.3.0, v1.2.0, v1.1.0 │ 🚀 v1.4.0 Hardening │ 🌟 v1.5.0 Advanced │ 🔮 v2.0 Enterprise
│ (Released Dez 2025) │ (Q1 2026, 12-16 W) │ (Q2-Q3 2026) │ (Q4 2026+)
│ │ │ │
│ ✅ ACID Transactions │ • Query Optimizer v2 │ • Advanced ML/GNN │ • Multi-DC Production
│ ✅ Multi-Model (100%) │ • Performance Tuning │ • Real-time Mat. Views │ • K8s Operator Controller
│ ✅ Security Stack (100%) │ • Production Hardening │ • Cross-Region Repl. │ • SOC 2, HIPAA Compliance
│ ✅ Sharding (100%) │ • Multi-Datacenter │ • Query Optimizer v3 │ • Cloud-Native Optim.
│ ✅ Replication (100%) │ • Monitoring++ │ • GPU Tuning++ │
│ ✅ GPU Acceleration (100%) │ • SDK Publishing │ │
│ ✅ CEP Engine (100%) │ • Documentation++ │ │
│ ✅ OLAP Analytics (100%) │ │ │
│ ✅ 7 SDKs (100%) │ • Pen-Test Phase 1 │ • Pen-Test Phase 2 │
│ ✅ K8s CRDs (100%) │ │ │
│ ✅ LLM Integration (opt) │ │ │
│ │ │ │
└─────────────────────────────┴────────────────────────┴──────────────────────────┴──────────────────────
Optional Feature: Native LLM integration mit llama.cpp
- ✅ llama.cpp Integration - Optional native LLM engine (requires
-DTHEMIS_ENABLE_LLM=ON) - ✅ GPU Acceleration - CUDA support with significant performance gains
- ✅ PagedAttention - Memory optimization for LLM workloads
- ✅ Continuous Batching - Concurrent request handling
- ✅ Multi-LoRA Manager - Multiple LoRA adapter support
- ✅ Plugin Architecture - Extensible LLM backend system
Documentation:
- ✅ Hypertables - TimescaleDB-compatible time-series
- ✅ Hybrid Search - RAG-optimized BM25 + vector search
- ✅ FAISS Advanced - IVF+PQ vector search with memory optimization
- ✅ Embedding Cache - Cost reduction for LLM applications
- ✅ Time-Series Aggregates - SIMD-accelerated analytics
Documentation:
- ✅ Performance Optimizations - Improved query execution
- ✅ Memory Improvements - Better memory management
- ✅ Stability Enhancements - Bug fixes and reliability improvements
Documentation:
Philosophie: "Production-ready reliability and scale"
1. Query Optimizer v2 (4 Wochen)
- ✅ Advanced query optimization strategies
- ✅ Cost-based optimization
- ✅ Join order optimization
- ✅ Index selection improvements
2. Production Monitoring (3 Wochen)
- ✅ Enhanced metrics and observability
- ✅ Performance profiling tools
- ✅ Advanced alerting
3. Multi-Datacenter Support (4 Wochen)
- ✅ Cross-region replication
- ✅ Geo-distribution capabilities
- ✅ Conflict resolution strategies
4. Performance Tuning (3 Wochen)
- ✅ Memory optimizations
- ✅ Query execution improvements
- ✅ Caching enhancements
5. Documentation & Testing (2 Wochen)
- ✅ SDK publishing
- ✅ Comprehensive testing
- ✅ Security hardening (Pen-Test Phase 1)
Philosophie: "Smart combination of existing libs + targeted new libs for compatibility"
1. vLLM AI Support (8-12 Wochen, 1 neue Lib)
- ✅ LoRA Manager - Multi-Tenant LoRA Serving (HuggingFace PEFT, 6-8 Wochen)
- LoRA Weight Storage in RocksDB mit ZSTD Compression
- TBB Parallel Loading für Multi-Tenant Performance
- gRPC Integration zu vLLM (optional)
- ✅ FAISS Advanced - IVF+PQ Vector Search (3-4 Wochen, keine neue Lib!)
- 10-100x Memory Reduction vs. Flat Index
- GPU Acceleration via CUDA (Kernbestand!)
- ✅ Hybrid Search - BM25 + Vector Fusion (2-3 Wochen, keine neue Lib!)
- Reciprocal Rank Fusion (RRF)
- RAG Performance Optimization
- ✅ Embedding Cache - Semantic Caching (2-3 Wochen, keine neue Lib!)
- 70-90% Cost Reduction für vLLM API Calls
- Fuzzy Match via Vector Similarity
2. Geo-Spatial PostGIS Compatibility (6-9 Wochen, 2 neue Libs)
- ✅ GEOS Integration - PostGIS-kompatible Topology Operations (4-6 Wochen)
- ST_Buffer, ST_Union, ST_Intersection
- 3D Geometries Support
- ✅ PROJ Transforms - Coordinate Transformations (2-3 Wochen)
- WGS84 ↔ UTM ↔ Web Mercator
- Geography Support (Spherical Distances)
- ✅ cuSpatial GPU Ops - GPU-beschleunigte Geo Operations (6-8 Wochen, optional)
- 10-100x Speedup für Spatial Joins
- Arrow Zero-Copy Integration
3. IoT/Timescale Compatibility (5-7 Wochen, 0 neue Libs!)
- ✅ Hypertables - RocksDB Column Families (3-4 Wochen, nur Code!)
- Automatische Partitionierung (1 Chunk pro Tag)
- TTL via RocksDB (v1.1.0 Feature!)
- ✅ Arrow Aggregates - Time-Series Analytics (2-3 Wochen, keine neue Lib!)
- SIMD Performance mit Arrow Compute
- 5-10x Speedup bei Aggregationen
- ✅ Parquet Archive - Cold Storage (bereits in v1.1.0!)
- 90% Storage Reduction vs. RocksDB
- DuckDB Parquet Queries (v1.2.0)
Enterprise AI+Geo: 19 deps (+3 auf v1.1.0 Basis)
- GEOS, PROJ, HuggingFace PEFT
- Fokus: PostGIS + LoRA + TimescaleDB Compatibility
Enterprise AI (nur vLLM): 17 deps (+1 auf v1.1.0 Basis)
- HuggingFace PEFT
- Fokus: Multi-Tenant LoRA Serving
Enterprise Geo (nur PostGIS): 18 deps (+2 auf v1.1.0 Basis)
- GEOS, PROJ
- Fokus: PostGIS Drop-in Replacement
Engineering Effort: 12-16 Wochen (parallelisierbar auf ~8-10 Wochen mit Team) Neue Dependencies: 3 (GEOS, PROJ, HuggingFace PEFT) Dependency Overhead: +18% (3 neue Libs auf 16 bestehende)
Erwartete Performance:
- vLLM AI: 10-100x Vector Search (IVF+PQ), 70-90% Cost Reduction (Embedding Cache)
- Geo-Spatial: PostGIS Compatibility, 10-100x GPU Geo Ops
- IoT/Timescale: TimescaleDB-kompatible Hypertables, 5-10x Aggregation Performance
Dokumentation:
- 📖 Enterprise Features Strategy - Detaillierte v1.2.0 Strategie
- 📖 v1.1.0 Variant Strategy - Basis für v1.2.0
- 📖 Library Interactions - Wechselwirkungen
Wechselwirkungen:
- LoRA Manager: RocksDB (Storage) + TBB (Parallel Loading) + vLLM (gRPC)
- FAISS Advanced: CUDA (GPU Acceleration, Kernbestand!)
- GEOS/PROJ: Boost.Geometry (Hybrid Strategy)
- cuSpatial: Arrow (Zero-Copy) + CUDA (Kernbestand!)
- Hypertables: RocksDB Column Families + TTL (v1.1.0!)
| Phase | Komponente | Status | Dateien |
|---|---|---|---|
| 1 | VCC-URN Schema | ✅ ERLEDIGT | src/sharding/urn_resolver.cpp |
| 2 | PKI/mTLS Infrastructure | ✅ ERLEDIGT | src/sharding/mtls_client.cpp |
| 3 | Request Routing | ✅ ERLEDIGT | src/sharding/shard_router.cpp |
| 4 | Data Migration | ✅ ERLEDIGT | src/sharding/data_migrator.cpp |
| P2P | Gossip-Protokoll | ✅ ERLEDIGT | src/sharding/gossip_protocol.cpp |
| P2 | Cross-Shard Joins | ✅ ERLEDIGT | shard_router.cpp::executeCrossShardJoin() |
| P2 | Scatter-Gather | ✅ ERLEDIGT | shard_router.cpp::scatterGather() |
| Infra | etcd Integration | ✅ ERLEDIGT | shard_topology.cpp::loadFromMetadataStore() |
| Infra | Health Checks | ✅ ERLEDIGT | health_check.cpp |
| Infra | Cloud Agent Multi-DC | ✅ ERLEDIGT | cloud_agent.cpp |
| Komponente | Status | Dateien |
|---|---|---|
| CRD Definition | ✅ ERLEDIGT | deploy/kubernetes/crds/themisdb.vcc.io_themisdbs.yaml |
| Cluster Example | ✅ ERLEDIGT | deploy/kubernetes/examples/themisdb-cluster.yaml |
| Single-Node Example | ✅ ERLEDIGT | deploy/kubernetes/examples/themisdb-single.yaml |
| README | ✅ ERLEDIGT | deploy/kubernetes/README.md |
| Komponente | Status | Dateien |
|---|---|---|
| Plugin Interface | ✅ ERLEDIGT | include/content/content_plugin_interface.h |
| PDF Processor | ✅ ERLEDIGT |
include/content/pdf_processor.h, src/content/pdf_processor.cpp
|
| Office Processor | ✅ ERLEDIGT |
include/content/office_processor.h, src/content/office_processor.cpp
|
| YAML Configs | ✅ ERLEDIGT |
config/content_processors.yaml, config/processors/*.yaml
|
| Architecture Doc | ✅ ERLEDIGT | docs/content/CONTENT_PROCESSOR_PLUGINS.md |
Plugin-Konfigurationen:
-
config/processors/pdf.yaml- PDF (poppler backend) -
config/processors/office.yaml- DOCX, XLSX, PPTX, ODF -
config/processors/video.yaml- MP4, MKV, WebM (FFmpeg) -
config/processors/audio.yaml- MP3, WAV, FLAC (FFmpeg) -
config/processors/geo.yaml- GeoJSON, GPX, Shapefile (GDAL) -
config/processors/image.yaml- JPEG, PNG, TIFF (libvips) -
config/processors/cad.yaml- STEP, IGES, STL (OpenCASCADE) -
config/processors/text.yaml- TXT, JSON, XML, Markdown
| Komponente | Status | Dateien |
|---|---|---|
| Penetration Test Guide | ✅ ERLEDIGT | docs/security/PENETRATION_TEST_GUIDE.md |
| Attack Vectors Analysis | ✅ ERLEDIGT | 50+ Vektoren dokumentiert |
| Comprehensive Audit | ✅ ERLEDIGT | docs/COMPREHENSIVE_AUDIT_TODO.md |
| Komponente | Status | Dateien |
|---|---|---|
| Integration Tests | ✅ ERLEDIGT |
tests/test_sharding_integration.cpp (~17 Tests) |
| E2E Tests | ✅ ERLEDIGT |
tests/test_sharding_e2e.cpp (~15 Tests) |
| Chaos Tests | ✅ ERLEDIGT |
tests/test_sharding_chaos.cpp (~18 Tests) |
| Performance Benchmarks | ✅ ERLEDIGT | benchmarks/bench_sharding_performance.cpp |
| Dokument | Status | Beschreibung |
|---|---|---|
| SCALING_TODO.md | ✅ ERLEDIGT | Vollständige TODO-Liste |
| SHARDING_UNIFIED_DOCUMENTATION.md | ✅ ERLEDIGT | Autoritative Sharding-Docs |
| FEATURES.md | ✅ AKTUALISIERT | Status-Korrekturen |
| README.md | ✅ AKTUALISIERT | Sharding + GPU Abschnitte |
Status: 🔧 In Arbeit
Aufwand: 2 Wochen
Owner: TBD
JavaScript SDK:
- ✅ Basic CRUD, URN Routing, Transactions
⚠️ Graph Traversal API hinzufügen⚠️ Connection Pooling⚠️ NPM Package veröffentlichen
Python SDK:
- ✅ Basic CRUD, URN Routing, Transactions
⚠️ Async/Await Support hinzufügen⚠️ PyPI Package veröffentlichen
Status: 📋 Vorbereitet
Aufwand: 4-6 Wochen
Owner: Externer Dienstleister
Scope:
- ✅ Attack Vectors dokumentiert (
docs/security/PENETRATION_TEST_GUIDE.md) ⚠️ Externen Pen-Tester beauftragen⚠️ Test durchführen⚠️ Findings beheben⚠️ Re-Test
Status: ✅ Architektur implementiert, DLL-Build ausstehend
Aufwand: 2-3 Wochen
Owner: TBD
Implementiert:
- ✅ Plugin Interface (
content_plugin_interface.h) - ✅ YAML-Konfigurationen für alle Prozessoren
- ✅ PDF Processor Header + Implementierung
- ✅ Office Processor Header + Implementierung
Ausstehend:
⚠️ CMake für Plugin-Build (separate DLLs)⚠️ Video/Audio Plugin mit FFmpeg⚠️ Geo Plugin mit GDAL⚠️ Image Plugin mit libvips⚠️ CAD Plugin mit OpenCASCADE
Status: 📋 Geplant
Aufwand: 6-8 Wochen
Owner: TBD
Go SDK:
- Idiomatic Go API
- Context cancellation
- Connection pooling
- Comprehensive tests
Rust SDK:
- Safe wrapper
- Async/await
- Type-safe query builder
Status: 📋 Design
Aufwand: 2-3 Wochen
Owner: TBD
Features:
- OVER clause
- PARTITION BY
- ROW_NUMBER, RANK, DENSE_RANK
- LAG, LEAD
- Running totals
Status: 📋 Geplant
Aufwand: 3-4 Monate
Owner: TBD
Hinweis: Sharding Phase 1-4 ist bereits zu 95% implementiert. Die Replication baut darauf auf.
Phase 1: Leader-Follower (Q2 2026)
- WAL-basierte Replikation
- Async mit konfigurierbarem Lag
- Automatic Failover
- Read Replicas
Phase 2: Multi-Master (Q3 2026)
- CRDT-basierte Konfliktlösung
- Vector Clocks für Kausalität
- Last-Write-Wins als Fallback
- Quorum-basierte Konsistenz
Bereits implementiert (Dezember 2025):
- ✅ Shard Routing Layer
- ✅ Cross-Shard Transactions
- ✅ P2P Gossip Protocol
- ✅ Health Checks & Failover Detection
Status: 📋 Geplant
Aufwand: 2-3 Monate
Owner: TBD
2.2.1 Vector Search GPU (CUDA)
Priorität: P0
Aufwand: 6-8 Wochen
Implementierung:
- Faiss GPU Integration
- CUDA Kernels für Distance Computation
- GPU Memory Management (VRAM)
- Batch Processing Optimization
- Hybrid CPU/GPU Strategy
Hardware Requirements:
- CUDA Toolkit 11.0+
- GPU: Compute Capability 7.0+ (Volta/Turing/Ampere/Hopper)
- VRAM: Mindestens 8GB (empfohlen 16GB+)
Erwartete Performance:
- 10-50x Speedup für Batch Queries
- Sub-millisecond latency für k=100
- Durchsatz: 50.000-100.000 queries/s
Dokumentation:
docs/performance/gpu_vector_search.mddocs/performance/cuda_setup.md- Benchmarks & Tuning Guide
2.2.2 Geo Operations GPU
Priorität: P1
Aufwand: 4-6 Wochen
Implementierung:
- Spatial Index GPU Queries
- Parallel Distance Computations
- GPU-accelerated R-Tree
- GeoJSON processing on GPU
Erwarteter Speedup: 5-20x für komplexe Spatial Queries
2.2.3 DirectX Compute Shaders (Windows)
Priorität: P2
Aufwand: 4-6 Wochen
Use Cases:
- Windows-native GPU acceleration
- Fallback wenn CUDA nicht verfügbar
- DirectML für ML Workloads
Technologie:
- DirectX 12 Compute Shaders
- DirectML API
- Windows 10/11 optimiert
Status: Design
Aufwand: 2-3 Monate
Owner: TBD
Features:
- CUBE operator (all combinations)
- ROLLUP operator (hierarchical aggregation)
- GROUPING SETS
- Recursive CTEs
- Materialized Views
Optimization:
- Columnar storage optimization
- Apache Arrow acceleration
- Parallel aggregation
- Query result caching
Status: Planung
Aufwand: 8-12 Wochen
Owner: TBD
Go SDK:
- Idiomatic Go API
- Connection pooling
- Transaction support
- Context cancellation
- Comprehensive tests
Rust SDK:
- Safe wrapper
- Async/await
- Zero-copy where possible
- Type-safe query builder
Dokumentation:
- SDK Quick Start Guides
- API Reference
- Best Practices
Status: Planung
Aufwand: 4-6 Wochen
Owner: TBD
Features:
- Join optimizations (Hash Join, Merge Join)
- Statistics & Histograms
- Cost model refinement
- Cardinality estimation
- Adaptive query execution
Status: Design
Aufwand: 6-8 Wochen
Owner: TBD
Features:
- Tenant isolation
- Resource quotas (CPU, Memory, Storage)
- Rate limiting per tenant
- Billing integration
- Tenant-level encryption keys
Status: Research
Aufwand: 4-6 Monate
Owner: TBD
Features:
- Cross-DC replication
- Geo-distributed queries
- Conflict resolution strategies
- WAN-optimized protocols
- Disaster recovery
Challenges:
- Latency management
- Consistency models (Eventual, Strong, Causal)
- Network partitions
- Data sovereignty (GDPR)
Status: Research
Aufwand: 3-4 Monate
Owner: TBD
Features:
- Automated deployment
- Scaling (horizontal/vertical)
- Rolling updates
- Backup/restore automation
- Monitoring integration
Technologies:
- Operator SDK
- Custom Resource Definitions (CRDs)
- Helm Charts
Status: Research
Aufwand: 6-8 Monate
Owner: TBD
Features:
- Graph Neural Networks (GNNs)
- Embedding generation
- Model training in-database
- Inference API
- Feature store integration
Technologies:
- TensorFlow/PyTorch integration
- ONNX Runtime
- GPU acceleration (CUDA)
Status: Research
Aufwand: 4-6 Monate
Owner: TBD
Features:
- Stream processing engine
- Window operations (Tumbling, Sliding, Session)
- Complex Event Processing (CEP)
- Apache Kafka integration
- Low-latency aggregations
Status: Planning
Aufwand: 3-4 Monate
Owner: TBD
Platforms:
- AWS (EKS, ECS, S3, RDS)
- Azure (AKS, Blob Storage, Cosmos DB)
- GCP (GKE, Cloud Storage, BigQuery)
Features:
- Managed service option
- Auto-scaling
- Cloud storage integration
- Serverless functions
- Terraform/CloudFormation templates
Status: Research
Aufwand: 6+ Monate
Owner: TBD
Features:
- Graph algorithms library (Louvain, PageRank, etc.)
- Time-series forecasting
- Anomaly detection
- Recommendation engine
- Natural Language Processing (NLP)
| Metric | Current | Q1 Target | Improvement |
|---|---|---|---|
| Write Throughput | 45K ops/s | 60K ops/s | +33% |
| Read Throughput | 120K ops/s | 150K ops/s | +25% |
| Query Latency (p50) | 0.12 ms | 0.08 ms | -33% |
| Vector Search (p50) | 0.55 ms | 0.40 ms | -27% |
| Graph Traversal (p50) | 0.31 ms | 0.25 ms | -19% |
| Metric | Q1 Target | Q2-Q3 Target | Improvement |
|---|---|---|---|
| Vector Search (Batch) | 1,800 q/s | 50,000 q/s | +2,700% |
| Geo Operations | 5,000 ops/s | 50,000 ops/s | +900% |
| OLAP Aggregation | 1,000 q/s | 10,000 q/s | +900% |
| Metric | Q2-Q3 Target | Q4+ Target | Improvement |
|---|---|---|---|
| Horizontal Scalability | 1 node | 10+ nodes | Linear scaling |
| Write Throughput | 60K ops/s | 600K+ ops/s | +900% |
| Read Throughput | 150K ops/s | 1.5M+ ops/s | +900% |
GPU Acceleration:
⚠️ CUDA Toolkit Version Compatibility⚠️ GPU Driver Support⚠️ VRAM Requirements (8GB+ recommended)⚠️ Faiss Library Stability
Distributed System:
⚠️ Consensus Algorithm Choice (Raft vs. Paxos)⚠️ Network Latency Management⚠️ CAP Theorem Trade-offs
Cloud Deployment:
⚠️ Multi-cloud Compatibility⚠️ Vendor Lock-in Avoidance⚠️ Cost Optimization
Wahrscheinlichkeit: HIGH
Impact: HIGH
Mitigation:
- Phased rollout (Sharding → Replication → Multi-DC)
- Comprehensive testing (Jepsen-style)
- Fallback to single-node mode
- Expert consultation
Wahrscheinlichkeit: MEDIUM
Impact: MEDIUM
Mitigation:
- Prototype & benchmark early
- Hybrid CPU/GPU strategy
- Graceful degradation without GPU
- Alternative: DirectX Compute for Windows
Wahrscheinlichkeit: MEDIUM
Impact: HIGH
Mitigation:
- Developer-friendly APIs
- Comprehensive documentation
- Code examples & tutorials
- Community engagement
Wahrscheinlichkeit: MEDIUM
Impact: MEDIUM
Mitigation:
- Automated benchmark suite
- Performance budgets in CI
- Regular profiling
- Optimization sprints
Q1 2026:
- 1-2 Core Engineers (C++)
- 1 DevOps Engineer
- 1 Technical Writer
Q2-Q3 2026 (Scaling Phase):
- 2-3 Core Engineers (C++)
- 1 GPU/CUDA Specialist
- 1 Distributed Systems Engineer
- 1 DevOps Engineer
- 1 Technical Writer
Q4 2026+ (Innovation Phase):
- 3-4 Core Engineers
- 1-2 ML Engineers
- 2 Distributed Systems Engineers
- 1-2 DevOps Engineers
- 1 Technical Writer
- 1 Community Manager
Q1 2026: $50K-$100K
- Entwicklung (SDK, Encryption, Content)
- Infrastructure (CI/CD, Testing)
- Documentation
Q2-Q3 2026: $200K-$400K
- GPU Hardware (Development & Testing)
- Cloud Infrastructure
- Distributed Systems Development
- Performance Testing
Q4 2026+: $400K-$800K
- Multi-DC Infrastructure
- ML/Analytics Development
- Enterprise Support
- Marketing & Community
- ✅ Horizontale Skalierung Phase 1-4 implementiert (95%)
- ✅ P2P Gossip-Protokoll implementiert
- ✅ Kubernetes Operator CRDs erstellt
- ✅ Content Processor Plugin-Architektur definiert
- ✅ Penetration Test Guide erstellt
- ✅ Performance Benchmarks implementiert
- ✅ Integration/E2E/Chaos Tests erstellt
⚠️ SDK Publishing (NPM, PyPI)⚠️ Penetration Test durchgeführt⚠️ Content Processor DLLs gebaut⚠️ Go/Rust SDK Alpha
⚠️ GPU acceleration operational (10x speedup)⚠️ Replication (Leader-Follower) functional⚠️ Production deployments (3+ customers)⚠️ Performance targets met
⚠️ Multi-DC deployment⚠️ Kubernetes Operator Controller released⚠️ 10+ production customers⚠️ Community adoption (1000+ GitHub stars)
Diese Roadmap ist ein lebendes Dokument. Änderungen ergeben sich aus:
- Stakeholder-Feedback
- Technologische Entwicklungen
- Marktanforderungen
- Ressourcenverfügbarkeit
Review-Zyklus: Monatlich (Q1 2026), Quarterly (Q2+)
Repository: https://github.com/makr-code/ThemisDB
Issues: https://github.com/makr-code/ThemisDB/issues
Diskussionen: https://github.com/makr-code/ThemisDB/discussions
Letzte Aktualisierung: 5. Dezember 2025
Version: 4.0
Nächstes Review: Januar 2026
ThemisDB v1.3.4 | GitHub | Documentation | Discussions | License
Last synced: January 02, 2026 | Commit: 6add659
Version: 1.3.0 | Stand: Dezember 2025
- Übersicht
- Home
- Dokumentations-Index
- Quick Reference
- Sachstandsbericht 2025
- Features
- Roadmap
- Ecosystem Overview
- Strategische Übersicht
- Geo/Relational Storage
- RocksDB Storage
- MVCC Design
- Transaktionen
- Time-Series
- Memory Tuning
- Chain of Thought Storage
- Query Engine & AQL
- AQL Syntax
- Explain & Profile
- Rekursive Pfadabfragen
- Temporale Graphen
- Zeitbereichs-Abfragen
- Semantischer Cache
- Hybrid Queries (Phase 1.5)
- AQL Hybrid Queries
- Hybrid Queries README
- Hybrid Query Benchmarks
- Subquery Quick Reference
- Subquery Implementation
- Content Pipeline
- Architektur-Details
- Ingestion
- JSON Ingestion Spec
- Enterprise Ingestion Interface
- Geo-Processor Design
- Image-Processor Design
- Hybrid Search Design
- Fulltext API
- Hybrid Fusion API
- Stemming
- Performance Tuning
- Migration Guide
- Future Work
- Pagination Benchmarks
- Enterprise README
- Scalability Features
- HTTP Client Pool
- Build Guide
- Implementation Status
- Final Report
- Integration Analysis
- Enterprise Strategy
- Verschlüsselungsstrategie
- Verschlüsselungsdeployment
- Spaltenverschlüsselung
- Encryption Next Steps
- Multi-Party Encryption
- Key Rotation Strategy
- Security Encryption Gap Analysis
- Audit Logging
- Audit & Retention
- Compliance Audit
- Compliance
- Extended Compliance Features
- Governance-Strategie
- Compliance-Integration
- Governance Usage
- Security/Compliance Review
- Threat Model
- Security Hardening Guide
- Security Audit Checklist
- Security Audit Report
- Security Implementation
- Development README
- Code Quality Pipeline
- Developers Guide
- Cost Models
- Todo Liste
- Tool Todo
- Core Feature Todo
- Priorities
- Implementation Status
- Roadmap
- Future Work
- Next Steps Analysis
- AQL LET Implementation
- Development Audit
- Sprint Summary (2025-11-17)
- WAL Archiving
- Search Gap Analysis
- Source Documentation Plan
- Changefeed README
- Changefeed CMake Patch
- Changefeed OpenAPI
- Changefeed OpenAPI Auth
- Changefeed SSE Examples
- Changefeed Test Harness
- Changefeed Tests
- Dokumentations-Inventar
- Documentation Summary
- Documentation TODO
- Documentation Gap Analysis
- Documentation Consolidation
- Documentation Final Status
- Documentation Phase 3
- Documentation Cleanup Validation
- API
- Authentication
- Cache
- CDC
- Content
- Geo
- Governance
- Index
- LLM
- Query
- Security
- Server
- Storage
- Time Series
- Transaction
- Utils
Vollständige Dokumentation: https://makr-code.github.io/ThemisDB/