Skip to content

performance_gpu_plan

GitHub Actions edited this page Jan 2, 2026 · 1 revision

GPU Acceleration Plan - ThemisDB

Stand: 22. Dezember 2025
Version: v1.3.0
Kategorie: ⚡ Performance
Status: Planning Phase
Priorität: P0 (Q2 2026)


📑 Table of Contents


Executive Summary

ThemisDB plant die Integration von GPU-Beschleunigung für kritische Performance-Bottlenecks:

  • Vector Search (CUDA/Faiss GPU) - 10-50x Speedup
  • Geo Operations (CUDA Spatial Kernels) - 5-20x Speedup
  • DirectX Compute (Windows Fallback) - Native Windows GPU Support

Erwarteter ROI:

  • Batch Vector Search: 1,800 → 50,000+ queries/s
  • Spatial Queries: 5,000 → 50,000+ ops/s
  • Total Cost: $50K-$100K (Hardware + Development)

1. GPU Vector Search (CUDA/Faiss GPU)

1.1 Hardware Requirements

Minimum:

  • GPU: NVIDIA GPU with Compute Capability 7.0+ (Volta: V100, T4)
  • VRAM: 8GB
  • CUDA: 11.0+
  • Driver: 450.80.02+

Recommended:

  • GPU: A100 (80GB), RTX 4090 (24GB), or H100
  • VRAM: 16GB+
  • CUDA: 12.0+
  • Multi-GPU: 2-4 GPUs for parallel processing

Performance Expectations:

Hardware Vectors Batch Size Throughput Latency (p50)
CPU (i7-12700K) 1M 100 1,800 q/s 0.55 ms
T4 (16GB) 1M 1000 25,000 q/s 0.04 ms
A100 (40GB) 10M 5000 100,000 q/s 0.05 ms

1.2 Implementation Timeline

Phase 1: Faiss GPU Integration (4 weeks)

  • Add Faiss GPU dependency
  • Implement GPUVectorIndex class
  • GPU memory management
  • Index build on GPU
  • Batch query API

Phase 2: CUDA Custom Kernels (2 weeks)

  • CUDA kernel for distance computation
  • Memory optimization
  • Warp-level primitives

Phase 3: Integration & Testing (2 weeks)

  • VectorIndexManager integration
  • Configuration support
  • Benchmark suite
  • Error handling

2. DirectX Compute Shaders (Windows)

2.1 Motivation

  • Windows-native GPU acceleration
  • Fallback when CUDA not available
  • DirectML for ML workloads
  • Wider GPU compatibility (AMD, Intel)

2.2 Hardware Requirements

Minimum:

  • Windows 10 (1809+) or Windows 11
  • DirectX 12 capable GPU
  • Driver: WDDM 2.5+

Expected Performance:

  • 70-90% of CUDA performance
  • Better compatibility with non-NVIDIA GPUs

3. Geo Operations GPU Acceleration

3.1 Operations to Accelerate

  • Distance calculations (haversine, vincenty)
  • Point-in-polygon tests
  • R-Tree spatial queries
  • Geohash encoding/decoding
  • KNN spatial search

Expected Speedup: 5-20x for complex spatial queries


4. Cost Analysis

Hardware Cost (One-time):

  • T4 (16GB): ~$2,500
  • RTX 4090 (24GB): ~$1,600
  • A100 (40GB): ~$10,000

Development Cost:

  • Phase 1 (Faiss): 4 weeks × $10K = $40K
  • Phase 2 (CUDA): 2 weeks × $10K = $20K
  • Phase 3 (Testing): 2 weeks × $10K = $20K
  • Total: $80K development + $2.5K-$10K hardware

ROI:

  • 10-50x performance improvement
  • Reduced infrastructure costs
  • Better user experience

5. Timeline & Milestones

Q2 2026 (April - June)

April 2026:

  • Week 1-2: Faiss GPU Integration
  • Week 3-4: CUDA Custom Kernels

May 2026:

  • Week 1-2: Integration & Testing
  • Week 3-4: DirectX Compute

June 2026:

  • Week 1-2: Geo Operations GPU
  • Week 3-4: Documentation & Release

6. Risks & Mitigation

Risk 1: CUDA Version Compatibility

Mitigation: Support CUDA 11.0+, test on multiple GPU generations

Risk 2: VRAM Exhaustion

Mitigation: Chunked processing, VRAM monitoring, automatic CPU fallback

Risk 3: Performance Not Meeting Expectations

Mitigation: Early prototyping, profiling, hybrid CPU/GPU strategy


7. Success Criteria

Performance:

  • ✅ 10x speedup for batch vector search
  • ✅ 5x speedup for geo operations
  • ✅ Graceful degradation to CPU

Quality:

  • ✅ Correctness verified
  • ✅ No memory leaks
  • ✅ Complete documentation

Vollständige technische Details: Siehe extended version in repository documentation

Letzte Aktualisierung: 20. November 2025
Version: 1.0
Nächstes Review: Januar 2026

ThemisDB Dokumentation

Version: 1.3.0 | Stand: Dezember 2025


📋 Schnellstart


🏗️ Architektur


🗄️ Basismodell


💾 Storage & MVCC


📇 Indexe & Statistiken


🔍 Query & AQL


💰 Caching


📦 Content Pipeline


🔎 Suche


⚡ Performance & Benchmarks


🏢 Enterprise Features


✅ Qualitätssicherung


🧮 Vektor & GNN


🌍 Geo Features


🛡️ Sicherheit & Governance

Authentication

Schlüsselverwaltung

Verschlüsselung

TLS & Certificates

PKI & Signatures

PII Detection

Vault & HSM

Audit & Compliance

Security Audits

Gap Analysis


🚀 Deployment & Betrieb

Docker

Observability

Change Data Capture

Operations


💻 Entwicklung

API Implementations

Changefeed

Security Development

Development Overviews


📄 Publikation & Ablage


🔧 Admin-Tools


🔌 APIs


📚 Client SDKs


📊 Implementierungs-Zusammenfassungen


📅 Planung & Reports


📖 Dokumentation


📝 Release Notes


📖 Styleguide & Glossar


🗺️ Roadmap & Changelog


💾 Source Code Documentation

Main Programs

Source Code Module


🗄️ Archive


🤝 Community & Support


Vollständige Dokumentation: https://makr-code.github.io/ThemisDB/

Clone this wiki locally