-
Notifications
You must be signed in to change notification settings - Fork 0
performance_gpu_plan
Stand: 22. Dezember 2025
Version: v1.3.0
Kategorie: ⚡ Performance
Status: Planning Phase
Priorität: P0 (Q2 2026)
ThemisDB plant die Integration von GPU-Beschleunigung für kritische Performance-Bottlenecks:
- Vector Search (CUDA/Faiss GPU) - 10-50x Speedup
- Geo Operations (CUDA Spatial Kernels) - 5-20x Speedup
- DirectX Compute (Windows Fallback) - Native Windows GPU Support
Erwarteter ROI:
- Batch Vector Search: 1,800 → 50,000+ queries/s
- Spatial Queries: 5,000 → 50,000+ ops/s
- Total Cost: $50K-$100K (Hardware + Development)
Minimum:
- GPU: NVIDIA GPU with Compute Capability 7.0+ (Volta: V100, T4)
- VRAM: 8GB
- CUDA: 11.0+
- Driver: 450.80.02+
Recommended:
- GPU: A100 (80GB), RTX 4090 (24GB), or H100
- VRAM: 16GB+
- CUDA: 12.0+
- Multi-GPU: 2-4 GPUs for parallel processing
Performance Expectations:
| Hardware | Vectors | Batch Size | Throughput | Latency (p50) |
|---|---|---|---|---|
| CPU (i7-12700K) | 1M | 100 | 1,800 q/s | 0.55 ms |
| T4 (16GB) | 1M | 1000 | 25,000 q/s | 0.04 ms |
| A100 (40GB) | 10M | 5000 | 100,000 q/s | 0.05 ms |
Phase 1: Faiss GPU Integration (4 weeks)
- Add Faiss GPU dependency
- Implement GPUVectorIndex class
- GPU memory management
- Index build on GPU
- Batch query API
Phase 2: CUDA Custom Kernels (2 weeks)
- CUDA kernel for distance computation
- Memory optimization
- Warp-level primitives
Phase 3: Integration & Testing (2 weeks)
- VectorIndexManager integration
- Configuration support
- Benchmark suite
- Error handling
- Windows-native GPU acceleration
- Fallback when CUDA not available
- DirectML for ML workloads
- Wider GPU compatibility (AMD, Intel)
Minimum:
- Windows 10 (1809+) or Windows 11
- DirectX 12 capable GPU
- Driver: WDDM 2.5+
Expected Performance:
- 70-90% of CUDA performance
- Better compatibility with non-NVIDIA GPUs
- Distance calculations (haversine, vincenty)
- Point-in-polygon tests
- R-Tree spatial queries
- Geohash encoding/decoding
- KNN spatial search
Expected Speedup: 5-20x for complex spatial queries
Hardware Cost (One-time):
- T4 (16GB): ~$2,500
- RTX 4090 (24GB): ~$1,600
- A100 (40GB): ~$10,000
Development Cost:
- Phase 1 (Faiss): 4 weeks × $10K = $40K
- Phase 2 (CUDA): 2 weeks × $10K = $20K
- Phase 3 (Testing): 2 weeks × $10K = $20K
- Total: $80K development + $2.5K-$10K hardware
ROI:
- 10-50x performance improvement
- Reduced infrastructure costs
- Better user experience
April 2026:
- Week 1-2: Faiss GPU Integration
- Week 3-4: CUDA Custom Kernels
May 2026:
- Week 1-2: Integration & Testing
- Week 3-4: DirectX Compute
June 2026:
- Week 1-2: Geo Operations GPU
- Week 3-4: Documentation & Release
Mitigation: Support CUDA 11.0+, test on multiple GPU generations
Mitigation: Chunked processing, VRAM monitoring, automatic CPU fallback
Mitigation: Early prototyping, profiling, hybrid CPU/GPU strategy
Performance:
- ✅ 10x speedup for batch vector search
- ✅ 5x speedup for geo operations
- ✅ Graceful degradation to CPU
Quality:
- ✅ Correctness verified
- ✅ No memory leaks
- ✅ Complete documentation
Vollständige technische Details: Siehe extended version in repository documentation
Letzte Aktualisierung: 20. November 2025
Version: 1.0
Nächstes Review: Januar 2026
ThemisDB v1.3.4 | GitHub | Documentation | Discussions | License
Last synced: January 02, 2026 | Commit: 6add659
Version: 1.3.0 | Stand: Dezember 2025
- Übersicht
- Home
- Dokumentations-Index
- Quick Reference
- Sachstandsbericht 2025
- Features
- Roadmap
- Ecosystem Overview
- Strategische Übersicht
- Geo/Relational Storage
- RocksDB Storage
- MVCC Design
- Transaktionen
- Time-Series
- Memory Tuning
- Chain of Thought Storage
- Query Engine & AQL
- AQL Syntax
- Explain & Profile
- Rekursive Pfadabfragen
- Temporale Graphen
- Zeitbereichs-Abfragen
- Semantischer Cache
- Hybrid Queries (Phase 1.5)
- AQL Hybrid Queries
- Hybrid Queries README
- Hybrid Query Benchmarks
- Subquery Quick Reference
- Subquery Implementation
- Content Pipeline
- Architektur-Details
- Ingestion
- JSON Ingestion Spec
- Enterprise Ingestion Interface
- Geo-Processor Design
- Image-Processor Design
- Hybrid Search Design
- Fulltext API
- Hybrid Fusion API
- Stemming
- Performance Tuning
- Migration Guide
- Future Work
- Pagination Benchmarks
- Enterprise README
- Scalability Features
- HTTP Client Pool
- Build Guide
- Implementation Status
- Final Report
- Integration Analysis
- Enterprise Strategy
- Verschlüsselungsstrategie
- Verschlüsselungsdeployment
- Spaltenverschlüsselung
- Encryption Next Steps
- Multi-Party Encryption
- Key Rotation Strategy
- Security Encryption Gap Analysis
- Audit Logging
- Audit & Retention
- Compliance Audit
- Compliance
- Extended Compliance Features
- Governance-Strategie
- Compliance-Integration
- Governance Usage
- Security/Compliance Review
- Threat Model
- Security Hardening Guide
- Security Audit Checklist
- Security Audit Report
- Security Implementation
- Development README
- Code Quality Pipeline
- Developers Guide
- Cost Models
- Todo Liste
- Tool Todo
- Core Feature Todo
- Priorities
- Implementation Status
- Roadmap
- Future Work
- Next Steps Analysis
- AQL LET Implementation
- Development Audit
- Sprint Summary (2025-11-17)
- WAL Archiving
- Search Gap Analysis
- Source Documentation Plan
- Changefeed README
- Changefeed CMake Patch
- Changefeed OpenAPI
- Changefeed OpenAPI Auth
- Changefeed SSE Examples
- Changefeed Test Harness
- Changefeed Tests
- Dokumentations-Inventar
- Documentation Summary
- Documentation TODO
- Documentation Gap Analysis
- Documentation Consolidation
- Documentation Final Status
- Documentation Phase 3
- Documentation Cleanup Validation
- API
- Authentication
- Cache
- CDC
- Content
- Geo
- Governance
- Index
- LLM
- Query
- Security
- Server
- Storage
- Time Series
- Transaction
- Utils
Vollständige Dokumentation: https://makr-code.github.io/ThemisDB/