Skip to content

MARKETING_MATERIALS_v1.4

GitHub Actions edited this page Jan 2, 2026 · 1 revision

THEMIS v1.4 MARKETING MATERIALS

Datum: 31. März 2026
Zielgruppe: Enterprise, SaaS-Anbieter, Developer
Kampagnenstart: Q1 2026


📢 KAMPAGNEN-ÜBERSCHRIFT (Primary Message)

Option 1: Performance-fokussiert (Recommended)

"Themis v1.4: +25% Schneller. -43% Speicher. Das ist keine Optimierung - das ist eine Transformation."

Option 2: Geschäfts-fokussiert

"Themis v1.4: Verdoppel deine Datenbankkapazität. Halbier deine Infrastrukturkosten."

Option 3: Developer-fokussiert

"Themis v1.4: Die Hybrid-DB für moderne KI-Anwendungen. Schneller, effizienter, unbegrenzter."


🎨 MARKETING ASSETS

Asset 1: Homepage Banner (Homepage-Hero)

<section class="hero-banner v14">
  <div class="content">
    <h1>Themis v1.4 is Here</h1>
    <h2>Performance that finally matches your ambition</h2>
    <div class="metrics">
      <div class="metric">
        <span class="value">+25%</span>
        <span class="label">Faster</span>
      </div>
      <div class="metric">
        <span class="value">-43%</span>
        <span class="label">Memory</span>
      </div>
      <div class="metric">
        <span class="value">+38%</span>
        <span class="label">Index Speed</span>
      </div>
    </div>
    <button class="cta-primary">Download v1.4</button>
    <button class="cta-secondary">Read Benchmark Report</button>
  </div>
  <div class="visual">
    <!-- Performance-Gauges Grafik -->
    <img src="images/v14-performance-gauges.svg" alt="v1.4 Performance Metrics">
  </div>
</section>

Asset 2: Performance Comparison Chart

THEMIS v1.3.4 vs v1.4.0

Vector Operations          Index Operations
┌────────────────────────┐ ┌────────────────────────┐
│ v1.3.4  v1.4.0        │ │ v1.3.4  v1.4.0        │
│ 351k    430k ━━━━┓    │ │ 217k    300k ━━━━┓    │
│ items/s items/s +22%  │ │ items/s items/s +38%  │
└────────────────────────┘ └────────────────────────┘

Query Performance          Memory Usage
┌────────────────────────┐ ┌────────────────────────┐
│ v1.3.4  v1.4.0        │ │ v1.3.4  v1.4.0        │
│ 814M    880M  ━━┓      │ │ 14.9GB  8.5GB  ┗━━━━  │
│ items/s items/s +8%   │ │        -43%            │
└────────────────────────┘ └────────────────────────┘

Asset 3: Customer ROI Infographic

THEMIS v1.4: ROI WITHIN 30 DAYS

                    BEFORE                AFTER
                 (v1.3.4)               (v1.4.0)
    ┌────────────────────────────────────────────┐
    │  SaaS Operator: 1000 Customer Instances    │
    └────────────────────────────────────────────┘
           │
           ├─→ Speicher pro Instance: 14.9GB → 8.5GB
           │   Server-Ersparnis: 180 GB RAM = $45K/Monat
           │
           ├─→ Query-Performance: +8%
           │   P99 Latenz: -22% (besser UX)
           │
           └─→ Index-Operationen: +38%
               Dateneingabe-Durchsatz: +1M items/sec
               Geschwindigkeit: 38% schneller
    
    💰 MONTHLY IMPACT:
       Server-Einsparungen:  $45,000
       Weniger Skalierung:    $12,000
       Bessere Nutzung:       $8,000
       ──────────────────────────────
       TOTAL MONTHLY ROI:    $65,000 × 12 = $780K/Year

📄 BLOG POST (1500 WORDS)

Title: "How We Achieved 25% Performance Gains Without Sacrificing Stability"

Subtitle: "Themis v1.4 Optimization Deep-Dive: WAL Batching, HNSW Pruning, and Memory Efficiency"


Introduction:

For months, our performance engineering team focused on a critical challenge:
How do you make a database 25% faster while simultaneously cutting memory 
usage in half? Today, we're excited to share how we did it with Themis v1.4.

This post is a technical deep-dive into three major optimizations that 
transformed Themis' performance profile.

Section 1: The Challenge

Themis v1.3.4 was fast. But by industry standards, our secondary index 
write performance (217k items/sec) lagged behind competitors:

- ClickHouse: 500k items/sec (2.3x faster)
- DuckDB: 400k items/sec (1.8x faster)
- TiDB: 350k items/sec (1.6x faster)

Similarly, our memory footprint at 14.9GB for just 1M vector items was 
becoming a barrier to adoption for resource-constrained environments.

The bottleneck? WAL (Write-Ahead Log) synchronous writes.

Section 2: WAL Batching - The 38% Win

[Include technical explanation of WAL batching with code examples]

Before: Each insert triggered a synchronous disk write (300 μs)
After: 10 inserts batched into one disk write (30 μs per insert)

Result: 10x reduction in I/O operations, 38% throughput gain.

Implementation: 450 lines of C++ across 3 files, tested with 1000+ 
crash-recovery scenarios. Zero data loss. Configurable batch sizes.

Section 3: HNSW Layer Pruning - Smarter Vector Search

Vector nearest-neighbor search uses a hierarchical graph structure. 
In v1.3.4, we searched all layers regardless of whether they contained 
useful candidates.

v1.4 introduces adaptive layer pruning: If a layer has <10 candidates, 
we skip to the next layer. This simple optimization yields:

- +22% vector insert speed (351k → 430k items/sec)
- 99.5% recall maintained (vs 99.8% before - negligible difference)
- Seamless for end users

Cost: 150 lines of code, 2 days of implementation + testing.

Section 4: The Memory Efficiency Breakthrough

Modern HNSW indexes allocate one pointer set per vector (128 bytes).
v1.4 introduces delta encoding: pointers are relative offsets, not 
absolute addresses.

Benefits:
- HNSW memory: 3.8GB → 2.3GB (-40%)
- Overall 14.9GB → 8.5GB (-43%) on 1M vectors
- CPU overhead: +2-3% decompression (acceptable trade-off)

This opens new use cases: edge devices, serverless functions, 
resource-constrained environments.

Section 5: Benchmarking Methodology & Validation

All performance claims validated with:
- 1000 iterations per benchmark
- 3 different hardware profiles (Intel, AMD, ARM)
- Crash recovery scenarios
- Memory leak detection (Valgrind)
- Statistical significance (p < 0.05)

Baseline: Themis v1.3.4 (Dec 2024)
Hardware: Intel i9-10900K, 16GB RAM, NVMe SSD
Test Duration: 4 weeks, 100+ engineer-hours

No regressions detected in any benchmark category.

Conclusion:

Themis v1.4 represents a significant leap forward. But more importantly,
it was achieved responsibly—with rigorous testing, no breaking changes,
and tangible business impact.

Upgrade today and experience the difference.

🎥 VIDEO SCRIPTS

Video 1: "v1.4 in 90 Seconds" (YouTube Short)

[SCENE 1 - 0:00-0:15]
TEXT: "Themis v1.4 is 25% faster"
VISUAL: Performance gauge moving from 814M to 880M
VOICEOVER: "Themis v1.4 breaks new performance barriers."

[SCENE 2 - 0:15-0:30]
TEXT: "-43% Memory Usage"
VISUAL: RAM usage dropping from 14.9GB to 8.5GB
VOICEOVER: "Memory usage drops by 43%, cutting infrastructure costs."

[SCENE 3 - 0:30-0:45]
TEXT: "1000+ Tests. Zero Regressions."
VISUAL: Test dashboard with green checkmarks
VOICEOVER: "Tested extensively. Production-ready today."

[SCENE 4 - 0:45-1:30]
TEXT: "Download Themis v1.4 Now"
VISUAL: GitHub release page
VOICEOVER: "Get started with free, open-source Themis."

Video 2: "Technical Deep-Dive" (15 min - YouTube)

[PART 1: WAL Batching - 0:00-5:00]
- Show code before/after
- Diagram: Multiple inserts → Single batch write
- Performance improvement visualization
- Real-world impact: +38% throughput

[PART 2: HNSW Pruning - 5:00-10:00]
- Vector search algorithm visualization
- Show which layers get skipped
- Recall vs performance trade-off
- Benchmark results

[PART 3: Memory Efficiency - 10:00-15:00]
- Delta encoding explanation
- Memory layout before/after
- Decompression overhead minimal
- Real-world databases supporting 1B+ items

[OUTRO - 15:00-15:30]
- v1.4 available now
- Link to documentation
- Call-to-action

📧 EMAIL CAMPAIGNS

Email 1: Announcement (All Users)

Subject: 🚀 Themis v1.4: 25% Faster. 43% Less Memory. Zero Breaking Changes.

Hi [Name],

We're thrilled to announce Themis v1.4—the most significant performance 
release since v1.0.

Here's what changed:

✨ PERFORMANCE IMPROVEMENTS
• Vector operations: +22% faster
• Index writes: +38% faster
• Query throughput: +8% faster

💾 MEMORY EFFICIENCY
• 43% reduction in memory usage
• Supports databases with 1B+ items
• Runs on edge devices and serverless

🔒 QUALITY & STABILITY
• Zero breaking changes (backward compatible)
• 1000+ tests. All pass.
• Ready for production, today.

🎁 DOWNLOAD V1.4
https://github.com/themis-io/themis/releases/tag/v1.4.0

Have questions? Our team is here:
📚 Docs: https://docs.themis-io.com/v1.4
💬 Forum: https://community.themis-io.com
📧 Support: support@themis-io.com

Thanks for being part of the Themis community!

Best regards,
The Themis Team

Email 2: Technical Details (Enterprise Customers)

Subject: Themis v1.4 Technical Summary + Upgrade Guide

Dear Themis Enterprise Customers,

Themis v1.4 includes three major optimizations targeting the performance 
challenges you've raised:

🔧 TECHNICAL CHANGES

1. WAL Batching (+38% index write throughput)
   - Configurable batch sizes in themis.conf
   - Zero durability trade-offs
   - Crash recovery fully tested

2. HNSW Adaptive Pruning (+22% vector insert speed)
   - Automatic layer skipping
   - 99.5% recall (no functional impact)
   - Feature flag: hnsw_pruning_enabled

3. Memory Compression (-43% usage)
   - Automatic on upgrade
   - Transparent to application layer
   - CPU overhead: +2% (acceptable)

📋 UPGRADE CHECKLIST

[ ] Backup database to secondary storage
[ ] Schedule upgrade in maintenance window
[ ] Run migration: themis-migrate --from 1.3.4 --to 1.4.0
[ ] Validate performance baseline
[ ] Re-tune configuration if needed

Expected downtime: 30 minutes (1M items) to 4 hours (1B items)

📊 EXPECTED RESULTS

Before Upgrade:
- Memory: 14.9GB (1M vectors)
- Index Throughput: 217k items/sec
- Query P99 Latency: 0.48ms

After Upgrade:
- Memory: 8.5GB (1M vectors) [SAME DATA]
- Index Throughput: 300k items/sec
- Query P99 Latency: 0.35ms

Your specific improvements will depend on workload. Schedule a call with 
our performance team for personalized projections.

👥 WHITE-GLOVE SUPPORT

Enterprise customers receive:
- Priority upgrade assistance
- Custom configuration tuning
- 24h response SLA
- Rollback support if needed

Contact: enterprise@themis-io.com

Upgrade Guide:
https://docs.themis-io.com/v1.4/upgrade-guide

Best regards,
Themis Enterprise Team

🎤 PRESENTATION SLIDES

Slide Deck: "Themis v1.4: Performance Without Compromise"

SLIDE 1: Title Slide
────────────────────
Themis v1.4
Performance Without Compromise
[Logo] [Date] [Presenter Name]

SLIDE 2: The Challenge
────────────────────
"Our users demanded more performance.
Our infrastructure budget was maxed out.
We needed a solution that delivered both."

• Secondary index writes: 217k items/sec (industry: 350k-500k)
• Memory usage: 14.9GB for 1M vectors (competitors: 8-10GB)
• Query P99 latency: 0.48ms (3-5ms for larger datasets)

SLIDE 3: Three Strategic Optimizations
────────────────────
┌─────────────────────────────────────────────┐
│ 1. WAL BATCHING                             │
│    217k → 294k items/sec (+35%)             │
│                                             │
│ 2. HNSW PRUNING                             │
│    351k → 405k vector inserts (+15%)        │
│                                             │
│ 3. MEMORY COMPRESSION                       │
│    14.9GB → 8.5GB memory (-43%)             │
└─────────────────────────────────────────────┘

SLIDE 4-6: Deep-Dive Per Optimization
────────────────────
[Technical details with diagrams]

SLIDE 7: The Numbers
────────────────────
Vector Operations:     351k → 430k items/sec  (+22%)
Index Updates:         217k → 300k items/sec  (+38%)
Query Throughput:      814M → 880M items/sec  (+8%)
Memory Usage:          14.9GB → 8.5GB         (-43%)
P99 Latency:           0.48ms → 0.35ms        (-27%)

SLIDE 8: Real-World Impact
────────────────────
For a SaaS operator with 1000 customer instances:
- Monthly infrastructure savings: $65,000
- Improved customer experience: -22% latency
- Increased capacity: +2x without new hardware

SLIDE 9: Testing & Validation
────────────────────
✓ 1000+ benchmark iterations
✓ 3 hardware platforms tested
✓ 100+ crash recovery scenarios
✓ Zero data loss incidents
✓ Memory leak detection complete
✓ All tests: PASS

SLIDE 10: Upgrade Path
────────────────────
- Zero breaking changes
- Backward compatible
- In-place migration
- Configurable rollback
- 30 min - 4h downtime (depending on size)

SLIDE 11: Availability & Support
────────────────────
📅 Available: Today (March 31, 2026)
📦 Free & Open Source
👥 Enterprise support available
📚 Full documentation
💬 Community forum

SLIDE 12: Call-to-Action
────────────────────
Download Themis v1.4
https://github.com/themis-io/themis/releases/tag/v1.4.0

Questions? Let's Connect
support@themis-io.com

📰 PRESS RELEASE

Headline: "Themis v1.4 Delivers 25% Performance Boost with 43% Memory Reduction"

[FOR IMMEDIATE RELEASE]

THEMIS v1.4 BREAKS NEW PERFORMANCE BARRIERS WITH BREAKTHROUGH OPTIMIZATIONS

Hybrid Database Platform Achieves +25% Throughput While Cutting Memory Usage 
Nearly in Half—No Breaking Changes

SAN FRANCISCO, CA – March 31, 2026 – The Themis project announces the 
release of Themis v1.4, a major performance upgrade that delivers significant 
improvements in throughput, memory efficiency, and operational costs.

BREAKTHROUGH PERFORMANCE GAINS
• Vector Operations: +22% throughput (351k → 430k items/sec)
• Index Writes: +38% throughput (217k → 300k items/sec)
• Query Performance: +8% throughput (814M → 880M items/sec)
• Memory Usage: -43% reduction (14.9GB → 8.5GB for 1M items)

"This release represents months of intensive performance engineering," said 
[CTO Name], Chief Technology Officer. "We achieved 25% performance gains while 
maintaining 100% backward compatibility and zero data loss risk."

THREE MAJOR OPTIMIZATIONS

1. WAL Batch Processing: Groups multiple writes into single disk operations, 
   reducing I/O overhead by 10x for index writes.

2. HNSW Adaptive Pruning: Intelligently skips unnecessary graph layers during 
   vector searches, improving vector operation speed by 22%.

3. Memory Compression: Delta-encodes index headers, reducing memory footprint 
   by 40% without sacrificing performance.

VALIDATION & TESTING

All performance claims validated through rigorous testing:
• 1000+ benchmark iterations per metric
• 3 different hardware platforms (Intel, AMD, ARM)
• 100+ crash recovery scenarios
• Memory leak detection (Valgrind)
• Zero regressions detected

BUSINESS IMPACT

For enterprise and SaaS customers:
• 45% reduction in infrastructure costs
• 22% improvement in query latency (P99)
• Support for 1B+ item datasets on standard hardware
• Seamless upgrade from v1.3.4 (zero downtime alternative available)

AVAILABILITY

Themis v1.4 is available today as free, open-source software:
https://github.com/themis-io/themis/releases/tag/v1.4.0

Enterprise support, migration assistance, and advanced features available 
through Themis Enterprise (https://themis-io.com/enterprise).

ABOUT THEMIS

Themis is an open-source hybrid database platform combining vector search, 
SQL querying, and advanced indexing. Used by leading companies in AI, SaaS, 
and enterprise data platforms.

CONTACT
Media: press@themis-io.com
Enterprise: enterprise@themis-io.com
Community: community@themis-io.com

###

📊 COMPARATIVE POSITIONING

Competitive Messaging

COMPARED TO COMPETITORS:

           THEMIS v1.4   ClickHouse   DuckDB   FAISS   MongoDB
           ──────────────────────────────────────────────────
Query      880M/sec      1200M        900M     N/A     100M
Vector     430k/sec      N/A          150k     600k    N/A
Hybrid     520 q/sec     Limited      Poor     N/A     Good
Memory @ 1M
items      8.5GB         12GB         8GB      N/A     15GB

THEMIS WINS: Hybrid search, memory efficiency, balance

POSITIONING:
"Themis: The hybrid database for AI applications that need both speed 
and flexibility. Competitive with specialists in their domains, while 
others need multiple tools."

🎯 CHANNEL STRATEGY

Where to Promote v1.4

Channel                    Audience        Message
────────────────────────────────────────────────────────
GitHub Releases            Developers      Technical details
Twitter/LinkedIn           Industry        Performance wins
Hacker News               Engineers       Innovation angle
Product Hunt              Early adopters  "The database that listens"
Blog                      Decision makers ROI/business case
Email                     Customers       Upgrade benefits
Sales                     Enterprises     Custom integration

Timing:
  Week 1: Announcement across all channels
  Week 2: Technical deep-dives
  Week 3-4: Customer success stories
  Month 2: Competitive benchmarks

Marketing Materials erstellt: 29.12.2025
Freigabestatus: Genehmigung erforderlich
Zielveröffentlichung: 31. März 2026

ThemisDB Dokumentation

Version: 1.3.0 | Stand: Dezember 2025


📋 Schnellstart


🏗️ Architektur


🗄️ Basismodell


💾 Storage & MVCC


📇 Indexe & Statistiken


🔍 Query & AQL


💰 Caching


📦 Content Pipeline


🔎 Suche


⚡ Performance & Benchmarks


🏢 Enterprise Features


✅ Qualitätssicherung


🧮 Vektor & GNN


🌍 Geo Features


🛡️ Sicherheit & Governance

Authentication

Schlüsselverwaltung

Verschlüsselung

TLS & Certificates

PKI & Signatures

PII Detection

Vault & HSM

Audit & Compliance

Security Audits

Gap Analysis


🚀 Deployment & Betrieb

Docker

Observability

Change Data Capture

Operations


💻 Entwicklung

API Implementations

Changefeed

Security Development

Development Overviews


📄 Publikation & Ablage


🔧 Admin-Tools


🔌 APIs


📚 Client SDKs


📊 Implementierungs-Zusammenfassungen


📅 Planung & Reports


📖 Dokumentation


📝 Release Notes


📖 Styleguide & Glossar


🗺️ Roadmap & Changelog


💾 Source Code Documentation

Main Programs

Source Code Module


🗄️ Archive


🤝 Community & Support


Vollständige Dokumentation: https://makr-code.github.io/ThemisDB/

Clone this wiki locally