-
Notifications
You must be signed in to change notification settings - Fork 0
GPU_CROSS_DOMAIN_METHODS
Stand: 5. Dezember 2025
Version: 1.0.0
Kategorie: Analysis
Datum: 20. November 2025
Status: Konzept & Machbarkeitsanalyse
Scope: Finanz, Technik, Wirtschaft → Datenbank-Optimierung
Frage: Welche Analysemethoden aus Finanz, Technik und Wirtschaft können GPU-gestützte Suche und Mustererkennung in ThemisDB verbessern?
Antwort: ✅ JA - Viele hochrelevante Methoden verfügbar!
Top 10 Methoden mit höchstem ROI:
| Methode | Branche | GPU-Speedup | ThemisDB Use Case | Priorität |
|---|---|---|---|---|
| Time Series Analysis | Finanz | 50-100x | Log-Analyse, Monitoring, Trends | P0 |
| Anomaly Detection | Finanz/Security | 20-50x | Fraud Detection, Security | P0 |
| Signal Processing (FFT) | Technik | 100-500x | Pattern Matching, Similarity | P1 |
| Monte Carlo Simulation | Finanz | 100-1000x | Risk Analysis, Forecasting | P1 |
| Spectral Clustering | ML/Wirtschaft | 10-50x | Community Detection | P1 |
| Wavelet Transform | Technik | 50-200x | Multi-Scale Pattern Search | P2 |
| Dynamic Time Warping | Wirtschaft | 20-100x | Sequence Similarity | P2 |
| Kalman Filter | Technik | 50-150x | State Estimation, Prediction | P2 |
| Hidden Markov Models | Finanz | 30-80x | Sequence Prediction | P3 |
| Tensor Decomposition | ML | 50-200x | Multi-Dimensional Analysis | P3 |
Was ist es?
- AutoRegressive Integrated Moving Average
- GARCH (Generalized AutoRegressive Conditional Heteroskedasticity)
- Vorhersage von Zeitreihen mit Saisonalität und Trends
GPU-Beschleunigung:
class GPUTimeSeriesAnalyzer {
public:
// ARIMA Model auf GPU
struct ARIMAModel {
int p, d, q; // AR, Integration, MA orders
std::vector<double> coefficients;
};
// Batch ARIMA fitting für viele Zeitreihen parallel
std::vector<ARIMAModel> fitARIMA_GPU(
const std::vector<std::vector<double>>& timeSeries,
int p, int d, int q
);
// Forecast nächste N Werte
std::vector<std::vector<double>> forecast_GPU(
const std::vector<ARIMAModel>& models,
int horizon
);
};ThemisDB Use Cases:
- Log Analytics: Server-Logs, API-Zugriffe vorhersagen
- Usage Patterns: Datenbank-Last-Vorhersage
- Monitoring: Anomalien in Metriken erkennen
- Business Analytics: Sales Forecasting aus DB-Daten
Beispiel:
-- AQL mit Time Series Analysis
FOR metric IN server_metrics
LET forecast = GPU_ARIMA_FORECAST(
metric.cpu_usage,
horizon: 24, // 24 hours ahead
confidence: 0.95
)
FILTER forecast.prediction > 0.8 // High CPU predicted
RETURN {
server: metric.server_id,
current: metric.cpu_usage[-1],
predicted: forecast.prediction,
alert: forecast.prediction > 0.8
}Performance:
- CPU: 100 Zeitreihen/Sekunde
- GPU: 10,000+ Zeitreihen/Sekunde
- Speedup: 100x
Was ist es?
- Erkennung von Ausreißern in hochdimensionalen Daten
- Fraud Detection in Finanztransaktionen
- Cybersecurity: Anomale Zugriffsmuster
GPU-Implementierung:
class GPUAnomalyDetector {
public:
// Isolation Forest auf GPU
struct IsolationForest {
int numTrees;
int maxDepth;
std::vector<void*> trees; // GPU tree structures
};
// Trainiere Isolation Forest
IsolationForest train_GPU(
const float* data,
size_t numSamples,
size_t numFeatures,
int numTrees = 100
);
// Batch anomaly scoring
std::vector<double> detectAnomalies_GPU(
const IsolationForest& forest,
const float* data,
size_t numSamples
);
// DBSCAN Clustering für Anomaly Detection
std::vector<int> dbscan_GPU(
const float* data,
size_t numSamples,
size_t numFeatures,
double eps,
int minPoints
);
};ThemisDB Use Cases:
- Fraud Detection: Verdächtige Transaktionen in Echtzeit
- Security: Anomale Login-Patterns
- Data Quality: Outlier Detection in Datasets
- System Monitoring: Anomale Server-Metriken
Beispiel:
-- Real-time Fraud Detection
FOR transaction IN transactions
COLLECT batch = BATCH(transaction, 1000)
LET anomalyScores = GPU_ISOLATION_FOREST(
ATTRIBUTES(batch, ["amount", "location", "time", "merchant"])
)
FOR i IN 0..LENGTH(batch)-1
FILTER anomalyScores[i] > 0.7 // High anomaly score
RETURN {
transaction: batch[i],
anomalyScore: anomalyScores[i],
flagged: true
}Performance:
- CPU: 1,000 Samples/Sekunde
- GPU: 50,000+ Samples/Sekunde
- Speedup: 50x
Was ist es?
- Probabilistische Simulation für Risikoanalyse
- Value at Risk (VaR) Berechnung
- Portfolio Optimization
GPU-Implementierung:
class GPUMonteCarloSimulator {
public:
// Monte Carlo VaR Berechnung
struct VaRResult {
double var_95;
double var_99;
double expectedLoss;
std::vector<double> scenarios;
};
VaRResult calculateVaR_GPU(
const std::vector<double>& returns,
const std::vector<double>& weights,
int numSimulations = 1000000
);
// Path simulation (z.B. für Option Pricing)
std::vector<std::vector<double>> simulatePaths_GPU(
double S0, // Initial value
double mu, // Drift
double sigma, // Volatility
int numPaths,
int numSteps
);
};ThemisDB Use Cases:
- Risk Analytics: Portfolio Risk Berechnung
- What-If Analysis: Business Scenario Simulation
- Capacity Planning: Server-Load Simulation
- A/B Testing: Statistical Significance Testing
Performance:
- CPU: 10,000 Simulations/Sekunde
- GPU: 10,000,000+ Simulations/Sekunde
- Speedup: 1000x (massiv parallel)
Was ist es?
- Frequenz-Analyse von Signalen
- Pattern Matching im Frequenz-Domain
- Periodizitätserkennung
GPU-Implementierung:
class GPUSignalProcessor {
public:
// Batch FFT für viele Zeitreihen
std::vector<std::vector<std::complex<double>>> batchFFT_GPU(
const std::vector<std::vector<double>>& signals
);
// Convolution via FFT (für Pattern Matching)
std::vector<double> convolution_GPU(
const std::vector<double>& signal,
const std::vector<double>& pattern
);
// Spectral similarity
double spectralSimilarity_GPU(
const std::vector<double>& signal1,
const std::vector<double>& signal2
);
};ThemisDB Use Cases:
- Pattern Matching: Ähnliche Zeitreihen finden (Frequenz-basiert)
- Periodicity Detection: Zyklische Muster in Logs
- Audio/Video Search: Similarity in Media-DBs
- Text Analysis: Stylometry, Authorship Detection
Beispiel:
-- Finde ähnliche Zeitreihen via FFT
FOR ts1 IN timeseries
LET spectrum1 = GPU_FFT(ts1.values)
FOR ts2 IN timeseries
FILTER ts1._id != ts2._id
LET spectrum2 = GPU_FFT(ts2.values)
LET similarity = GPU_SPECTRAL_SIMILARITY(spectrum1, spectrum2)
FILTER similarity > 0.9
RETURN {ts1, ts2, similarity}Performance:
- CPU FFT: 1,000 FFTs/Sekunde
- GPU FFT: 500,000+ FFTs/Sekunde
- Speedup: 500x
Was ist es?
- Multi-Scale Analyse (Zeit + Frequenz gleichzeitig)
- Besser als FFT für nicht-stationäre Signale
- Edge Detection, Denoising
GPU-Implementierung:
class GPUWaveletAnalyzer {
public:
enum class WaveletType {
HAAR, DAUBECHIES, SYMLET, COIFLET
};
// Continuous Wavelet Transform
std::vector<std::vector<double>> cwt_GPU(
const std::vector<double>& signal,
WaveletType wavelet,
int scales
);
// Multi-Resolution Analysis
struct MRAResult {
std::vector<std::vector<double>> approximations;
std::vector<std::vector<double>> details;
};
MRAResult multiResolutionAnalysis_GPU(
const std::vector<double>& signal,
int levels
);
};ThemisDB Use Cases:
- Multi-Scale Pattern Search: Patterns auf verschiedenen Zeitskalen
- Compression: Wavelet-basierte Daten-Kompression
- Denoising: Rauschunterdrückung in Zeitreihen
- Edge Detection: Changepoint Detection
Performance:
- CPU: 100 Wavelets/Sekunde
- GPU: 20,000+ Wavelets/Sekunde
- Speedup: 200x
Was ist es?
- Optimaler State Estimator
- Sensor Fusion
- Prediction mit Noise
GPU-Implementierung:
class GPUKalmanFilter {
public:
struct KalmanState {
Eigen::VectorXd state;
Eigen::MatrixXd covariance;
};
// Batch Kalman filtering für viele Zeitreihen
std::vector<std::vector<KalmanState>> batchFilter_GPU(
const std::vector<std::vector<double>>& measurements,
const Eigen::MatrixXd& A, // State transition
const Eigen::MatrixXd& H, // Observation model
const Eigen::MatrixXd& Q, // Process noise
const Eigen::MatrixXd& R // Measurement noise
);
};ThemisDB Use Cases:
- State Estimation: System State Tracking
- Prediction: Short-term Forecasting
- Sensor Fusion: Combine multiple data sources
- Smoothing: Denoising von Metriken
Performance:
- CPU: 500 Filters/Sekunde
- GPU: 50,000+ Filters/Sekunde
- Speedup: 100x
Was ist es?
- Graph-basiertes Clustering
- Nutzt Eigenvektoren der Laplace-Matrix
- Findet nicht-konvexe Cluster
GPU-Implementierung:
class GPUSpectralClustering {
public:
// Spectral Clustering auf GPU
std::vector<int> cluster_GPU(
const SparseMatrix& affinityMatrix,
int numClusters,
int numEigenvectors
);
// Für Graphen: Community Detection
std::vector<std::vector<int>> detectCommunities_GPU(
const PropertyGraph& graph,
int numCommunities
);
};ThemisDB Use Cases:
- Community Detection: Social Networks, Knowledge Graphs
- Customer Segmentation: Market Analysis
- Document Clustering: Text Analytics
- Recommendation: Similar Item Groups
Performance:
- CPU: 10-100 Nodes/Sekunde
- GPU: 10,000+ Nodes/Sekunde
- Speedup: 100x+
Was ist es?
- Similarity Measure für Zeitreihen unterschiedlicher Länge
- Elastisches Matching
- Spracherkennung, Gesten-Erkennung
GPU-Implementierung:
class GPUDynamicTimeWarping {
public:
// Batch DTW distance computation
std::vector<std::vector<double>> batchDTW_GPU(
const std::vector<std::vector<double>>& series1,
const std::vector<std::vector<double>>& series2,
int windowSize = -1 // Sakoe-Chiba band
);
// DTW-based KNN search
std::vector<std::vector<int>> dtwKNN_GPU(
const std::vector<double>& query,
const std::vector<std::vector<double>>& database,
int k
);
};ThemisDB Use Cases:
- Pattern Search: Flexible Sequence Matching
- Similarity Search: Similar Zeitreihen (unterschiedliche Länge)
- Gesture Recognition: User Behavior Patterns
- Anomaly Detection: Abnormal Sequences
Performance:
- CPU: 100 DTW/Sekunde
- GPU: 10,000+ DTW/Sekunde
- Speedup: 100x
Was ist es?
- Multidimensionale Matrix-Faktorisierung
- Pattern Discovery in höheren Dimensionen
- Empfehlungssysteme, Knowledge Graphs
GPU-Implementierung:
class GPUTensorDecomposition {
public:
// CP Decomposition (CANDECOMP/PARAFAC)
struct CPDecomposition {
std::vector<Eigen::MatrixXd> factors;
int rank;
};
CPDecomposition cpDecomposition_GPU(
const Tensor& tensor,
int rank,
int maxIter = 100
);
// Tucker Decomposition
struct TuckerDecomposition {
Tensor core;
std::vector<Eigen::MatrixXd> factors;
};
TuckerDecomposition tuckerDecomposition_GPU(
const Tensor& tensor,
const std::vector<int>& ranks
);
};ThemisDB Use Cases:
- Knowledge Graph Completion: Missing Links Prediction
- Recommendation: User-Item-Context Tensors
- Multi-Relational Analysis: Complex Entity Relationships
- Pattern Mining: Hidden Patterns in Multi-Dimensional Data
Performance:
- CPU: Minuten für große Tensoren
- GPU: Sekunden
- Speedup: 50-200x
class GPUHybridPatternMatcher {
public:
// Kombiniert FFT, DTW und Anomaly Detection
struct PatternMatchResult {
std::vector<int> matches;
std::vector<double> scores;
std::vector<double> anomalyScores;
};
PatternMatchResult findSimilarPatterns_GPU(
const std::vector<double>& query,
const std::vector<std::vector<double>>& database,
int k,
bool useFFT = true,
bool useDTW = true,
bool detectAnomalies = true
);
};// Ensemble von mehreren Methoden
class GPUEnsembleAnalyzer {
public:
struct EnsembleResult {
std::vector<double> consensusScores;
std::map<std::string, std::vector<double>> methodScores;
double confidence;
};
EnsembleResult analyze_GPU(
const std::vector<double>& data,
const std::vector<std::string>& methods // ["fft", "dtw", "isolation_forest"]
);
};- CUDA/Vulkan Backend (Done)
- Faiss GPU (Done)
- Time Series Analysis (ARIMA auf GPU)
- Anomaly Detection (Isolation Forest auf GPU)
- FFT (cuFFT Integration)
- Spectral Clustering (für Community Detection)
- Monte Carlo Simulation
- Wavelet Transform
- Dynamic Time Warping
- Kalman Filter
- Hidden Markov Models
- Tensor Decomposition
- Hybrid Ensemble Methods
- cuFFT: NVIDIA FFT Library
- cuBLAS: Linear Algebra
- cuSPARSE: Sparse Matrix Operations
- cuSOLVER: Linear Solvers
- cuRAND: Random Number Generation (Monte Carlo)
- Thrust: GPU STL-like Algorithms
- cuML: RAPIDS ML Library (Clustering, Anomaly Detection)
- cuSignal: Signal Processing on GPU
- cuGraph: Graph Analytics on GPU
- cuDF: GPU DataFrame (Pandas-like)
# CMakeLists.txt
find_package(CUDAToolkit REQUIRED)
find_package(RAPIDS COMPONENTS cuML cuGraph cuSignal)
target_link_libraries(themis_core
CUDA::cufft
CUDA::cublas
CUDA::cusparse
RAPIDS::cuml
RAPIDS::cugraph
RAPIDS::cusignal
)| Use Case | Methode | Speedup | Business Value |
|---|---|---|---|
| Fraud Detection | Isolation Forest + ARIMA | 50x | Hoch |
| Time Series Search | FFT + DTW | 100x | Hoch |
| Community Detection | Spectral Clustering | 50x | Mittel |
| Risk Analysis | Monte Carlo | 1000x | Hoch |
| Pattern Mining | Wavelet + Tensor | 100x | Mittel |
| Forecasting | ARIMA + Kalman | 100x | Hoch |
| Anomaly Detection | IF + DBSCAN + HMM | 50x | Hoch |
Quick Wins (4-6 Wochen):
- Time Series Analysis (ARIMA) - Sofort verwendbar für Monitoring
- Anomaly Detection (Isolation Forest) - Fraud Detection, Security
- FFT (cuFFT) - Pattern Matching Boost
Medium-Term (6-12 Wochen): 4. Spectral Clustering - Community Detection 5. Monte Carlo - Risk Analytics 6. DTW - Flexible Sequence Matching
- Kosten: $150K (6 Monate Development)
-
Nutzen:
- 50-1000x Performance für spezifische Workloads
- Neue Kunden (Fintech, Analytics, IoT)
- Unique Features vs. Konkurrenz
- Break-Even: 12-18 Monate
Fazit: Diese Methoden sind hochrelevant für ThemisDB! GPU-Beschleunigung bringt massive Performance-Gewinne (50-1000x) und erschließt neue Use Cases in Finanz, IoT, Analytics.
Letzte Aktualisierung: 20. November 2025
ThemisDB v1.3.4 | GitHub | Documentation | Discussions | License
Last synced: January 02, 2026 | Commit: 6add659
Version: 1.3.0 | Stand: Dezember 2025
- Übersicht
- Home
- Dokumentations-Index
- Quick Reference
- Sachstandsbericht 2025
- Features
- Roadmap
- Ecosystem Overview
- Strategische Übersicht
- Geo/Relational Storage
- RocksDB Storage
- MVCC Design
- Transaktionen
- Time-Series
- Memory Tuning
- Chain of Thought Storage
- Query Engine & AQL
- AQL Syntax
- Explain & Profile
- Rekursive Pfadabfragen
- Temporale Graphen
- Zeitbereichs-Abfragen
- Semantischer Cache
- Hybrid Queries (Phase 1.5)
- AQL Hybrid Queries
- Hybrid Queries README
- Hybrid Query Benchmarks
- Subquery Quick Reference
- Subquery Implementation
- Content Pipeline
- Architektur-Details
- Ingestion
- JSON Ingestion Spec
- Enterprise Ingestion Interface
- Geo-Processor Design
- Image-Processor Design
- Hybrid Search Design
- Fulltext API
- Hybrid Fusion API
- Stemming
- Performance Tuning
- Migration Guide
- Future Work
- Pagination Benchmarks
- Enterprise README
- Scalability Features
- HTTP Client Pool
- Build Guide
- Implementation Status
- Final Report
- Integration Analysis
- Enterprise Strategy
- Verschlüsselungsstrategie
- Verschlüsselungsdeployment
- Spaltenverschlüsselung
- Encryption Next Steps
- Multi-Party Encryption
- Key Rotation Strategy
- Security Encryption Gap Analysis
- Audit Logging
- Audit & Retention
- Compliance Audit
- Compliance
- Extended Compliance Features
- Governance-Strategie
- Compliance-Integration
- Governance Usage
- Security/Compliance Review
- Threat Model
- Security Hardening Guide
- Security Audit Checklist
- Security Audit Report
- Security Implementation
- Development README
- Code Quality Pipeline
- Developers Guide
- Cost Models
- Todo Liste
- Tool Todo
- Core Feature Todo
- Priorities
- Implementation Status
- Roadmap
- Future Work
- Next Steps Analysis
- AQL LET Implementation
- Development Audit
- Sprint Summary (2025-11-17)
- WAL Archiving
- Search Gap Analysis
- Source Documentation Plan
- Changefeed README
- Changefeed CMake Patch
- Changefeed OpenAPI
- Changefeed OpenAPI Auth
- Changefeed SSE Examples
- Changefeed Test Harness
- Changefeed Tests
- Dokumentations-Inventar
- Documentation Summary
- Documentation TODO
- Documentation Gap Analysis
- Documentation Consolidation
- Documentation Final Status
- Documentation Phase 3
- Documentation Cleanup Validation
- API
- Authentication
- Cache
- CDC
- Content
- Geo
- Governance
- Index
- LLM
- Query
- Security
- Server
- Storage
- Time Series
- Transaction
- Utils
Vollständige Dokumentation: https://makr-code.github.io/ThemisDB/