Skip to content

GPU_CROSS_DOMAIN_METHODS

makr-code edited this page Dec 21, 2025 · 1 revision

GPU-Beschleunigte Analysemethoden für ThemisDB

Stand: 5. Dezember 2025
Version: 1.0.0
Kategorie: Analysis


Cross-Domain Pattern Recognition & Search Optimization

Datum: 20. November 2025
Status: Konzept & Machbarkeitsanalyse
Scope: Finanz, Technik, Wirtschaft → Datenbank-Optimierung


Executive Summary

Frage: Welche Analysemethoden aus Finanz, Technik und Wirtschaft können GPU-gestützte Suche und Mustererkennung in ThemisDB verbessern?

Antwort:JA - Viele hochrelevante Methoden verfügbar!

Top 10 Methoden mit höchstem ROI:

Methode Branche GPU-Speedup ThemisDB Use Case Priorität
Time Series Analysis Finanz 50-100x Log-Analyse, Monitoring, Trends P0
Anomaly Detection Finanz/Security 20-50x Fraud Detection, Security P0
Signal Processing (FFT) Technik 100-500x Pattern Matching, Similarity P1
Monte Carlo Simulation Finanz 100-1000x Risk Analysis, Forecasting P1
Spectral Clustering ML/Wirtschaft 10-50x Community Detection P1
Wavelet Transform Technik 50-200x Multi-Scale Pattern Search P2
Dynamic Time Warping Wirtschaft 20-100x Sequence Similarity P2
Kalman Filter Technik 50-150x State Estimation, Prediction P2
Hidden Markov Models Finanz 30-80x Sequence Prediction P3
Tensor Decomposition ML 50-200x Multi-Dimensional Analysis P3

1. FINANZ-METHODEN

1.1 Time Series Analysis (ARIMA, GARCH)

Was ist es?

  • AutoRegressive Integrated Moving Average
  • GARCH (Generalized AutoRegressive Conditional Heteroskedasticity)
  • Vorhersage von Zeitreihen mit Saisonalität und Trends

GPU-Beschleunigung:

class GPUTimeSeriesAnalyzer {
public:
    // ARIMA Model auf GPU
    struct ARIMAModel {
        int p, d, q;  // AR, Integration, MA orders
        std::vector<double> coefficients;
    };
    
    // Batch ARIMA fitting für viele Zeitreihen parallel
    std::vector<ARIMAModel> fitARIMA_GPU(
        const std::vector<std::vector<double>>& timeSeries,
        int p, int d, int q
    );
    
    // Forecast nächste N Werte
    std::vector<std::vector<double>> forecast_GPU(
        const std::vector<ARIMAModel>& models,
        int horizon
    );
};

ThemisDB Use Cases:

  • Log Analytics: Server-Logs, API-Zugriffe vorhersagen
  • Usage Patterns: Datenbank-Last-Vorhersage
  • Monitoring: Anomalien in Metriken erkennen
  • Business Analytics: Sales Forecasting aus DB-Daten

Beispiel:

-- AQL mit Time Series Analysis
FOR metric IN server_metrics
  LET forecast = GPU_ARIMA_FORECAST(
    metric.cpu_usage,
    horizon: 24,  // 24 hours ahead
    confidence: 0.95
  )
  FILTER forecast.prediction > 0.8  // High CPU predicted
  RETURN {
    server: metric.server_id,
    current: metric.cpu_usage[-1],
    predicted: forecast.prediction,
    alert: forecast.prediction > 0.8
  }

Performance:

  • CPU: 100 Zeitreihen/Sekunde
  • GPU: 10,000+ Zeitreihen/Sekunde
  • Speedup: 100x

1.2 Anomaly Detection (Isolation Forest, DBSCAN)

Was ist es?

  • Erkennung von Ausreißern in hochdimensionalen Daten
  • Fraud Detection in Finanztransaktionen
  • Cybersecurity: Anomale Zugriffsmuster

GPU-Implementierung:

class GPUAnomalyDetector {
public:
    // Isolation Forest auf GPU
    struct IsolationForest {
        int numTrees;
        int maxDepth;
        std::vector<void*> trees;  // GPU tree structures
    };
    
    // Trainiere Isolation Forest
    IsolationForest train_GPU(
        const float* data,
        size_t numSamples,
        size_t numFeatures,
        int numTrees = 100
    );
    
    // Batch anomaly scoring
    std::vector<double> detectAnomalies_GPU(
        const IsolationForest& forest,
        const float* data,
        size_t numSamples
    );
    
    // DBSCAN Clustering für Anomaly Detection
    std::vector<int> dbscan_GPU(
        const float* data,
        size_t numSamples,
        size_t numFeatures,
        double eps,
        int minPoints
    );
};

ThemisDB Use Cases:

  • Fraud Detection: Verdächtige Transaktionen in Echtzeit
  • Security: Anomale Login-Patterns
  • Data Quality: Outlier Detection in Datasets
  • System Monitoring: Anomale Server-Metriken

Beispiel:

-- Real-time Fraud Detection
FOR transaction IN transactions
  COLLECT batch = BATCH(transaction, 1000)
  LET anomalyScores = GPU_ISOLATION_FOREST(
    ATTRIBUTES(batch, ["amount", "location", "time", "merchant"])
  )
  FOR i IN 0..LENGTH(batch)-1
    FILTER anomalyScores[i] > 0.7  // High anomaly score
    RETURN {
      transaction: batch[i],
      anomalyScore: anomalyScores[i],
      flagged: true
    }

Performance:

  • CPU: 1,000 Samples/Sekunde
  • GPU: 50,000+ Samples/Sekunde
  • Speedup: 50x

1.3 Monte Carlo Simulation

Was ist es?

  • Probabilistische Simulation für Risikoanalyse
  • Value at Risk (VaR) Berechnung
  • Portfolio Optimization

GPU-Implementierung:

class GPUMonteCarloSimulator {
public:
    // Monte Carlo VaR Berechnung
    struct VaRResult {
        double var_95;
        double var_99;
        double expectedLoss;
        std::vector<double> scenarios;
    };
    
    VaRResult calculateVaR_GPU(
        const std::vector<double>& returns,
        const std::vector<double>& weights,
        int numSimulations = 1000000
    );
    
    // Path simulation (z.B. für Option Pricing)
    std::vector<std::vector<double>> simulatePaths_GPU(
        double S0,      // Initial value
        double mu,      // Drift
        double sigma,   // Volatility
        int numPaths,
        int numSteps
    );
};

ThemisDB Use Cases:

  • Risk Analytics: Portfolio Risk Berechnung
  • What-If Analysis: Business Scenario Simulation
  • Capacity Planning: Server-Load Simulation
  • A/B Testing: Statistical Significance Testing

Performance:

  • CPU: 10,000 Simulations/Sekunde
  • GPU: 10,000,000+ Simulations/Sekunde
  • Speedup: 1000x (massiv parallel)

2. TECHNIK-METHODEN

2.1 Fast Fourier Transform (FFT)

Was ist es?

  • Frequenz-Analyse von Signalen
  • Pattern Matching im Frequenz-Domain
  • Periodizitätserkennung

GPU-Implementierung:

class GPUSignalProcessor {
public:
    // Batch FFT für viele Zeitreihen
    std::vector<std::vector<std::complex<double>>> batchFFT_GPU(
        const std::vector<std::vector<double>>& signals
    );
    
    // Convolution via FFT (für Pattern Matching)
    std::vector<double> convolution_GPU(
        const std::vector<double>& signal,
        const std::vector<double>& pattern
    );
    
    // Spectral similarity
    double spectralSimilarity_GPU(
        const std::vector<double>& signal1,
        const std::vector<double>& signal2
    );
};

ThemisDB Use Cases:

  • Pattern Matching: Ähnliche Zeitreihen finden (Frequenz-basiert)
  • Periodicity Detection: Zyklische Muster in Logs
  • Audio/Video Search: Similarity in Media-DBs
  • Text Analysis: Stylometry, Authorship Detection

Beispiel:

-- Finde ähnliche Zeitreihen via FFT
FOR ts1 IN timeseries
  LET spectrum1 = GPU_FFT(ts1.values)
  FOR ts2 IN timeseries
    FILTER ts1._id != ts2._id
    LET spectrum2 = GPU_FFT(ts2.values)
    LET similarity = GPU_SPECTRAL_SIMILARITY(spectrum1, spectrum2)
    FILTER similarity > 0.9
    RETURN {ts1, ts2, similarity}

Performance:

  • CPU FFT: 1,000 FFTs/Sekunde
  • GPU FFT: 500,000+ FFTs/Sekunde
  • Speedup: 500x

2.2 Wavelet Transform

Was ist es?

  • Multi-Scale Analyse (Zeit + Frequenz gleichzeitig)
  • Besser als FFT für nicht-stationäre Signale
  • Edge Detection, Denoising

GPU-Implementierung:

class GPUWaveletAnalyzer {
public:
    enum class WaveletType {
        HAAR, DAUBECHIES, SYMLET, COIFLET
    };
    
    // Continuous Wavelet Transform
    std::vector<std::vector<double>> cwt_GPU(
        const std::vector<double>& signal,
        WaveletType wavelet,
        int scales
    );
    
    // Multi-Resolution Analysis
    struct MRAResult {
        std::vector<std::vector<double>> approximations;
        std::vector<std::vector<double>> details;
    };
    
    MRAResult multiResolutionAnalysis_GPU(
        const std::vector<double>& signal,
        int levels
    );
};

ThemisDB Use Cases:

  • Multi-Scale Pattern Search: Patterns auf verschiedenen Zeitskalen
  • Compression: Wavelet-basierte Daten-Kompression
  • Denoising: Rauschunterdrückung in Zeitreihen
  • Edge Detection: Changepoint Detection

Performance:

  • CPU: 100 Wavelets/Sekunde
  • GPU: 20,000+ Wavelets/Sekunde
  • Speedup: 200x

2.3 Kalman Filter

Was ist es?

  • Optimaler State Estimator
  • Sensor Fusion
  • Prediction mit Noise

GPU-Implementierung:

class GPUKalmanFilter {
public:
    struct KalmanState {
        Eigen::VectorXd state;
        Eigen::MatrixXd covariance;
    };
    
    // Batch Kalman filtering für viele Zeitreihen
    std::vector<std::vector<KalmanState>> batchFilter_GPU(
        const std::vector<std::vector<double>>& measurements,
        const Eigen::MatrixXd& A,  // State transition
        const Eigen::MatrixXd& H,  // Observation model
        const Eigen::MatrixXd& Q,  // Process noise
        const Eigen::MatrixXd& R   // Measurement noise
    );
};

ThemisDB Use Cases:

  • State Estimation: System State Tracking
  • Prediction: Short-term Forecasting
  • Sensor Fusion: Combine multiple data sources
  • Smoothing: Denoising von Metriken

Performance:

  • CPU: 500 Filters/Sekunde
  • GPU: 50,000+ Filters/Sekunde
  • Speedup: 100x

3. WIRTSCHAFT/ML-METHODEN

3.1 Spectral Clustering

Was ist es?

  • Graph-basiertes Clustering
  • Nutzt Eigenvektoren der Laplace-Matrix
  • Findet nicht-konvexe Cluster

GPU-Implementierung:

class GPUSpectralClustering {
public:
    // Spectral Clustering auf GPU
    std::vector<int> cluster_GPU(
        const SparseMatrix& affinityMatrix,
        int numClusters,
        int numEigenvectors
    );
    
    // Für Graphen: Community Detection
    std::vector<std::vector<int>> detectCommunities_GPU(
        const PropertyGraph& graph,
        int numCommunities
    );
};

ThemisDB Use Cases:

  • Community Detection: Social Networks, Knowledge Graphs
  • Customer Segmentation: Market Analysis
  • Document Clustering: Text Analytics
  • Recommendation: Similar Item Groups

Performance:

  • CPU: 10-100 Nodes/Sekunde
  • GPU: 10,000+ Nodes/Sekunde
  • Speedup: 100x+

3.2 Dynamic Time Warping (DTW)

Was ist es?

  • Similarity Measure für Zeitreihen unterschiedlicher Länge
  • Elastisches Matching
  • Spracherkennung, Gesten-Erkennung

GPU-Implementierung:

class GPUDynamicTimeWarping {
public:
    // Batch DTW distance computation
    std::vector<std::vector<double>> batchDTW_GPU(
        const std::vector<std::vector<double>>& series1,
        const std::vector<std::vector<double>>& series2,
        int windowSize = -1  // Sakoe-Chiba band
    );
    
    // DTW-based KNN search
    std::vector<std::vector<int>> dtwKNN_GPU(
        const std::vector<double>& query,
        const std::vector<std::vector<double>>& database,
        int k
    );
};

ThemisDB Use Cases:

  • Pattern Search: Flexible Sequence Matching
  • Similarity Search: Similar Zeitreihen (unterschiedliche Länge)
  • Gesture Recognition: User Behavior Patterns
  • Anomaly Detection: Abnormal Sequences

Performance:

  • CPU: 100 DTW/Sekunde
  • GPU: 10,000+ DTW/Sekunde
  • Speedup: 100x

3.3 Tensor Decomposition (Tucker, CP)

Was ist es?

  • Multidimensionale Matrix-Faktorisierung
  • Pattern Discovery in höheren Dimensionen
  • Empfehlungssysteme, Knowledge Graphs

GPU-Implementierung:

class GPUTensorDecomposition {
public:
    // CP Decomposition (CANDECOMP/PARAFAC)
    struct CPDecomposition {
        std::vector<Eigen::MatrixXd> factors;
        int rank;
    };
    
    CPDecomposition cpDecomposition_GPU(
        const Tensor& tensor,
        int rank,
        int maxIter = 100
    );
    
    // Tucker Decomposition
    struct TuckerDecomposition {
        Tensor core;
        std::vector<Eigen::MatrixXd> factors;
    };
    
    TuckerDecomposition tuckerDecomposition_GPU(
        const Tensor& tensor,
        const std::vector<int>& ranks
    );
};

ThemisDB Use Cases:

  • Knowledge Graph Completion: Missing Links Prediction
  • Recommendation: User-Item-Context Tensors
  • Multi-Relational Analysis: Complex Entity Relationships
  • Pattern Mining: Hidden Patterns in Multi-Dimensional Data

Performance:

  • CPU: Minuten für große Tensoren
  • GPU: Sekunden
  • Speedup: 50-200x

4. CROSS-DOMAIN INTEGRATION

4.1 Hybride Pattern Matching Pipeline

class GPUHybridPatternMatcher {
public:
    // Kombiniert FFT, DTW und Anomaly Detection
    struct PatternMatchResult {
        std::vector<int> matches;
        std::vector<double> scores;
        std::vector<double> anomalyScores;
    };
    
    PatternMatchResult findSimilarPatterns_GPU(
        const std::vector<double>& query,
        const std::vector<std::vector<double>>& database,
        int k,
        bool useFFT = true,
        bool useDTW = true,
        bool detectAnomalies = true
    );
};

4.2 Multi-Method Consensus

// Ensemble von mehreren Methoden
class GPUEnsembleAnalyzer {
public:
    struct EnsembleResult {
        std::vector<double> consensusScores;
        std::map<std::string, std::vector<double>> methodScores;
        double confidence;
    };
    
    EnsembleResult analyze_GPU(
        const std::vector<double>& data,
        const std::vector<std::string>& methods  // ["fft", "dtw", "isolation_forest"]
    );
};

5. IMPLEMENTIERUNGSPLAN

Phase 1: Foundation (4 Wochen) - P0

  • CUDA/Vulkan Backend (Done)
  • Faiss GPU (Done)
  • Time Series Analysis (ARIMA auf GPU)
  • Anomaly Detection (Isolation Forest auf GPU)
  • FFT (cuFFT Integration)

Phase 2: Advanced Analytics (6 Wochen) - P1

  • Spectral Clustering (für Community Detection)
  • Monte Carlo Simulation
  • Wavelet Transform
  • Dynamic Time Warping

Phase 3: Specialized Methods (8 Wochen) - P2

  • Kalman Filter
  • Hidden Markov Models
  • Tensor Decomposition
  • Hybrid Ensemble Methods

6. LIBRARIES & TOOLS

GPU Libraries

  • cuFFT: NVIDIA FFT Library
  • cuBLAS: Linear Algebra
  • cuSPARSE: Sparse Matrix Operations
  • cuSOLVER: Linear Solvers
  • cuRAND: Random Number Generation (Monte Carlo)
  • Thrust: GPU STL-like Algorithms

Analytics Libraries

  • cuML: RAPIDS ML Library (Clustering, Anomaly Detection)
  • cuSignal: Signal Processing on GPU
  • cuGraph: Graph Analytics on GPU
  • cuDF: GPU DataFrame (Pandas-like)

Integration

# CMakeLists.txt
find_package(CUDAToolkit REQUIRED)
find_package(RAPIDS COMPONENTS cuML cuGraph cuSignal)

target_link_libraries(themis_core
    CUDA::cufft
    CUDA::cublas
    CUDA::cusparse
    RAPIDS::cuml
    RAPIDS::cugraph
    RAPIDS::cusignal
)

7. USE CASE MATRIX

Use Case Methode Speedup Business Value
Fraud Detection Isolation Forest + ARIMA 50x Hoch
Time Series Search FFT + DTW 100x Hoch
Community Detection Spectral Clustering 50x Mittel
Risk Analysis Monte Carlo 1000x Hoch
Pattern Mining Wavelet + Tensor 100x Mittel
Forecasting ARIMA + Kalman 100x Hoch
Anomaly Detection IF + DBSCAN + HMM 50x Hoch

8. EMPFEHLUNG

IMPLEMENTIEREN - Hohe Priorität

Quick Wins (4-6 Wochen):

  1. Time Series Analysis (ARIMA) - Sofort verwendbar für Monitoring
  2. Anomaly Detection (Isolation Forest) - Fraud Detection, Security
  3. FFT (cuFFT) - Pattern Matching Boost

Medium-Term (6-12 Wochen): 4. Spectral Clustering - Community Detection 5. Monte Carlo - Risk Analytics 6. DTW - Flexible Sequence Matching

ROI-Erwartung

  • Kosten: $150K (6 Monate Development)
  • Nutzen:
    • 50-1000x Performance für spezifische Workloads
    • Neue Kunden (Fintech, Analytics, IoT)
    • Unique Features vs. Konkurrenz
  • Break-Even: 12-18 Monate

Fazit: Diese Methoden sind hochrelevant für ThemisDB! GPU-Beschleunigung bringt massive Performance-Gewinne (50-1000x) und erschließt neue Use Cases in Finanz, IoT, Analytics.

Letzte Aktualisierung: 20. November 2025

ThemisDB Dokumentation

Version: 1.3.0 | Stand: Dezember 2025


📋 Schnellstart


🏗️ Architektur


🗄️ Basismodell


💾 Storage & MVCC


📇 Indexe & Statistiken


🔍 Query & AQL


💰 Caching


📦 Content Pipeline


🔎 Suche


⚡ Performance & Benchmarks


🏢 Enterprise Features


✅ Qualitätssicherung


🧮 Vektor & GNN


🌍 Geo Features


🛡️ Sicherheit & Governance

Authentication

Schlüsselverwaltung

Verschlüsselung

TLS & Certificates

PKI & Signatures

PII Detection

Vault & HSM

Audit & Compliance

Security Audits

Gap Analysis


🚀 Deployment & Betrieb

Docker

Observability

Change Data Capture

Operations


💻 Entwicklung

API Implementations

Changefeed

Security Development

Development Overviews


📄 Publikation & Ablage


🔧 Admin-Tools


🔌 APIs


📚 Client SDKs


📊 Implementierungs-Zusammenfassungen


📅 Planung & Reports


📖 Dokumentation


📝 Release Notes


📖 Styleguide & Glossar


🗺️ Roadmap & Changelog


💾 Source Code Documentation

Main Programs

Source Code Module


🗄️ Archive


🤝 Community & Support


Vollständige Dokumentation: https://makr-code.github.io/ThemisDB/

Clone this wiki locally