-
Notifications
You must be signed in to change notification settings - Fork 0
auditlog
Version: 1.0
Datum: 20. November 2025
Zweck: Vollständige Dokumentation des Entwicklungsstands und Arbeitsprotokoll
ThemisDB ist eine produktionsreife Multi-Model-Datenbank mit 67% Gesamtimplementierung und 100% Core-Features komplett.
Status-Übersicht:
- ✅ Core Database (100%) - RocksDB, ACID Transactions, MVCC
- ✅ Security (100%) - TLS, RBAC, Encryption, Audit Logging, Field/Column Encryption
- ✅ Graph Engine (95%) - BFS, Dijkstra, Temporal Queries
- ✅ Vector Search (95%) - HNSW Index mit Persistenz
⚠️ Content Management (75%) - MVP implementiert⚠️ Analytics (60%) - Arrow Integration vorhanden
Status: ✅ 100% Production-Ready
- ✅ RocksDB TransactionDB mit MVCC (Snapshot Isolation)
- ✅ Write-Ahead Log (WAL) Konfiguration
- ✅ LSM-Tree Tuning (Block Cache, Memtable, Compression)
- ✅ Backup & Recovery (Checkpoints, Incremental Backups)
- ✅ Concurrent Read/Write Isolation
- ✅ Deadlock Detection & Resolution
- 27/27 MVCC Tests PASS
- 100% ACID Compliance
-
docs/mvcc_design.md- MVCC Architecture -
docs/deployment.md- Backup & Recovery -
docs/memory_tuning.md- Performance Tuning
Status: ✅ 100% Production-Ready
Implementiert:
- ✅ Secondary Indexes (Equality, Composite, Range)
- ✅ Sparse Indexes
- ✅ TTL Indexes (Auto-Expiration)
- ✅ Fulltext Indexes
- ✅ Index Statistics & Maintenance
- ✅ Automatic Index Updates on PUT/DELETE
- ✅ Query Optimizer (Cost-based execution)
Tests: All index tests PASS
Dokumentation: docs/indexes.md
Status: ✅ 95% Production-Ready
Implementiert:
- ✅ Adjacency Indexes (Outdex/Index)
- ✅ BFS Traversal (variable depth)
- ✅ Shortest Path (Dijkstra)
- ✅ A* Pathfinding
- ✅ Temporal Graph Queries (time-range filtering)
- ✅ Edge Property Aggregation (COUNT, SUM, AVG, MIN, MAX)
- ✅ Graph Topology Caching (RAM optimization)
- ✅ Path Constraints (Last-Edge, No-Vertex)
Offene Punkte:
⚠️ Distributed Graph Queries (geplant Q2 2026)
Tests:
-
test_graph_index.cpp- PASS -
test_temporal_aggregation_property.cpp- PASS -
test_bfs_graphid.cpp- PASS (Critical Bug Fix)
Dokumentation:
docs/recursive_path_queries.mddocs/path_constraints.mddocs/temporal_time_range_queries.md
Status: ✅ 95% Production-Ready
Implementiert:
- ✅ HNSW Index (L2, Cosine, Dot Product)
- ✅ Persistent HNSW (Save/Load on server start/shutdown)
- ✅ Batch Insert Operations (500-1000 items)
- ✅ KNN Search (configurable efSearch)
- ✅ Vector Metadata Encryption (PII protection)
Performance:
- 1,800 queries/s (k=10)
- 0.55 ms latency (p50)
Offene Punkte:
⚠️ GPU Acceleration (CUDA/Faiss GPU) - geplant⚠️ Quantization (Product Quantization, Scalar Quantization) - geplant
Tests: 10/10 vector tests PASS
Dokumentation: docs/vector_ops.md
Status: ✅ 85% Production-Ready
Implementiert:
- ✅ Gorilla Compression (10-20x compression)
- ✅ Continuous Aggregates (pre-computed rollups)
- ✅ Retention Policies (automatic data expiration)
- ✅ TSStore API
Offene Punkte:
⚠️ Downsampling Strategies⚠️ Gap Filling
Tests: 22/22 tests PASS
Dokumentation: docs/time_series.md
Status: ✅ 85% Cross-Cutting Feature
Implementiert:
- ✅ Geo Indexes (R-Tree, Geohash)
- ✅ GeoJSON Support
- ✅ GPX File Processing
- ✅ Spatial Queries (NEAR, WITHIN)
- ✅ Geo-Relational Schema
Offene Punkte:
⚠️ GPU-Beschleunigung für Geo-Operationen
Dokumentation:
docs/GEO_ARCHITECTURE.mddocs/geo_relational_schema.mddocs/geo_processor_design.md
Status:
Implementiert:
- ✅ Content Architecture (Unified Ingestion Pipeline)
- ✅ ContentTypeRegistry (MIME type detection)
- ✅ Image Processor (EXIF extraction, thumbnail generation)
- ✅ Geo Processor (GeoJSON/GPX parsing)
- ✅ Content-Blob ZSTD Compression (50% storage savings)
- ✅ Bulk Import API
Offene Punkte:
⚠️ PDF Processor⚠️ Office Document Processor⚠️ Video/Audio Metadata Extraction
Dokumentation:
docs/content_architecture.mddocs/ingestion.mddocs/image_processor_design.mddocs/geo_processor_design.md
Status: ✅ 82% Production-Ready
- ✅ FOR/FILTER/SORT/LIMIT/RETURN Syntax
- ✅ Graph Traversals (OUTBOUND/INBOUND/ANY)
- ✅ COLLECT/GROUP BY (with aggregations)
- ✅ Subqueries & CTEs (Common Table Expressions)
- ✅ JOIN Operations
- ✅ EXPLAIN/PROFILE (Query Optimization Debugging)
- ✅ Cost-based Query Optimizer
- ✅ Parallel Query Execution (Intel TBB)
Offene Punkte:
⚠️ Window Functions (OVER, PARTITION BY)⚠️ Recursive CTEs⚠️ Advanced Join Optimizations (Hash Join, Merge Join)
Tests: AQL integration tests PASS
Dokumentation:
docs/aql_syntax.mddocs/aql_explain_profile.mddocs/SUBQUERY_IMPLEMENTATION_SUMMARY.md
Status: ✅ 85% Production-Ready
1. TLS/SSL Hardening ✅
- TLS 1.3 default (TLS 1.2 fallback)
- Strong cipher suites
- mTLS client certificate verification
- HSTS headers
-
Dokumentation:
docs/TLS_SETUP.md(400+ Zeilen)
2. Certificate Pinning ✅
- SHA256 fingerprint verification
- HSM/TSA integration
-
Dokumentation:
docs/CERTIFICATE_PINNING.md(700+ Zeilen)
3. RBAC (Role-Based Access Control) ✅
- Role hierarchy (admin → operator → analyst → readonly)
- Resource-based permissions
- Wildcard support
-
Dokumentation:
docs/RBAC.md(800+ Zeilen)
4. Secrets Management ✅
- HashiCorp Vault integration (KV v2, AppRole)
- Automatic token renewal
- Secret rotation callbacks
-
Dokumentation:
docs/SECRETS_MANAGEMENT.md(500+ Zeilen)
5. Audit Logging ✅
- 65 security event types
- Hash chain (tamper-detection)
- SIEM integration (Syslog RFC 5424, Splunk HEC)
- Encrypt-then-sign pattern
-
Dokumentation:
docs/AUDIT_LOGGING.md(900+ Zeilen)
6. Encryption ✅
- Field-Level Encryption (AES-256-GCM)
- Lazy Re-Encryption (Zero-downtime key rotation)
- Vector Metadata Encryption
- Schema-Based Encryption
- Encryption Prometheus Metrics (42 counters)
-
Dokumentation:
docs/encryption_metrics.md(410+ Zeilen)
7. Input Validation ✅
- JSON schema validation
- AQL injection prevention
- Path traversal protection
- Max body size limits
8. Rate Limiting ✅
- Token bucket algorithm
- Per-IP & per-user limits
- HTTP 429 responses
Offene Punkte:
⚠️ Data Masking & Redaction
Hinweis: Column-Level Encryption ist bereits als "Field-Level Encryption" + "Schema-Based Encryption" vollständig implementiert (siehe Punkt 6 oben). In document databases sind Field-Level und Column-Level Encryption äquivalent.
Compliance:
- ✅ GDPR/DSGVO compliant
- ✅ SOC 2 ready
- ✅ HIPAA ready
Dokumentation:
-
docs/SECURITY_IMPLEMENTATION_SUMMARY.md(Master Doc) docs/security_hardening_guide.md-
docs/pki_integration_architecture.md(513 Zeilen) -
docs/pki_signatures.md(598 Zeilen)
Status: ✅ 95% Production-Ready
- ✅ Prometheus Metrics (/metrics endpoint)
- Request/Error counters
- Latency histograms (P50, P95, P99)
- RocksDB internals (cache, compaction, memtable)
- Encryption metrics (42 counters)
- ✅ OpenTelemetry Tracing
- ✅ Server Statistics (/stats endpoint)
- ✅ Index Statistics
- ✅ Transaction Statistics
Offene Punkte:
⚠️ Distributed Tracing (Multi-Node)⚠️ Custom Metrics SDK
Tests: 4/4 metrics tests PASS
Dokumentation:
docs/observability/prometheus_metrics.mddocs/encryption_metrics.md
Status:
HTTP REST API ✅ 100%
- Entity CRUD (
/entities/*) - Index Management (
/index/*) - Query API (
/query,/query/aql) - Graph Traversal (
/graph/traverse) - Content Import (
/content/import) - Monitoring (
/health,/stats,/metrics) - Transactions (
/transaction/*)
OpenAPI Specification ✅ 100%
- Complete REST API documentation
-
Datei:
openapi/openapi.yaml
C++ SDK ✅ 100% (Native)
- Direct library integration
- Full ACID transaction support
Python Client
- Basic HTTP wrapper
- Located in
clients/python/
JavaScript SDK
- Basic HTTP wrapper
- Located in
clients/javascript/
Offene Punkte:
⚠️ Python SDK finalisieren⚠️ JavaScript SDK finalisieren⚠️ Go SDK erstellen⚠️ Rust SDK erstellen
Dokumentation:
docs/apis/rest_api.mddocs/developers.mdopenapi/openapi.yaml
Status: ✅ 100% Production-Ready (Windows only)
- ✅ Audit Log Viewer (WPF)
- ✅ SAGA Verifier (WPF)
- ✅ PII Manager (WPF)
- ✅ Key Rotation Dashboard (WPF)
- ✅ Retention Manager (WPF)
- ✅ Classification Dashboard (WPF)
- ✅ Compliance Reports (WPF)
Build:
- PowerShell:
publish-all.ps1 - Output:
dist/<ToolName>/
Dokumentation:
docs/admin_tools_user_guide.mddocs/admin_tools_admin_guide.md
Stand: 20. November 2025
- Gesamt: 63.506 Zeilen C++ Code
-
Headers:
include/Verzeichnis -
Implementation:
src/Verzeichnis - Tests: 143 Test-Dateien
- Gesamt: 303 Tests
- Status: 303/303 PASS (100%)
- Framework: Google Test
- Coverage: Umfassend (alle Core-Features)
- Markdown-Dateien: 279 Dateien
- Security Docs: 3.400+ Zeilen
- PKI Docs: 1.111 Zeilen
- Gesamt: ~50.000+ Zeilen Dokumentation
Hardware: i7-12700K, Windows 11, Release Build
| Operation | Throughput | Latency (p50) | Latency (p99) |
|---|---|---|---|
| Entity PUT | 45,000 ops/s | 0.02 ms | 0.15 ms |
| Entity GET | 120,000 ops/s | 0.008 ms | 0.05 ms |
| Operation | Throughput | Latency (p50) | Latency (p99) |
|---|---|---|---|
| Indexed Query | 8,500 queries/s | 0.12 ms | 0.85 ms |
| Graph Traverse (depth=3) | 3,200 ops/s | 0.31 ms | 1.2 ms |
| Vector ANN (k=10) | 1,800 queries/s | 0.55 ms | 2.1 ms |
| Algorithm | Write Throughput | Compression Ratio |
|---|---|---|
| None | 34.5 MB/s | 1.0x |
| LZ4 | 33.8 MB/s | 2.1x |
| ZSTD | 32.3 MB/s | 2.8x |
Status: ✅ Production-Ready
Repositories:
- GitHub Container Registry (GHCR):
ghcr.io/makr-code/themis - Docker Hub:
themisdb/themis
Multi-Arch Support:
- ✅ x64-linux
- ✅ arm64-linux
Tags:
-
latest,g<shortsha> - Arch-specific:
latest-x64-linux,latest-arm64-linux
Dockerfile:
-
Dockerfile- Build image -
Dockerfile.runtime- Runtime image (ubuntu:22.04 based)
Offene Punkte:
⚠️ Multi-stage minimal runtime (distroless)⚠️ Automated security scanning (Trivy in CI)
Status: ✅ Production-Ready
CMake:
- Version: 3.20+
- Generator: Visual Studio, Ninja, Unix Makefiles
- Build Types: Debug, Release, RelWithDebInfo
Dependency Management:
- vcpkg (Manifest Mode)
- Fixed baseline for reproducible builds
-
vcpkg.jsonmit allen Dependencies
Scripts:
- Windows:
setup.ps1,build.ps1 - Linux/WSL:
setup.sh,build.sh
Build Directories:
- WSL:
build-wsl/ - MSVC:
build-msvc/ - Ninja:
build-ninja/ - Generic:
build/
- RocksDB Integration
- ACID Transactions (MVCC)
- Base Entity Storage
- WAL & Recovery
- Secondary Indexes (100%)
- AQL Parser & Executor (82%)
- Query Optimizer (80%)
- Subqueries/CTEs (100%)
- Adjacency Indexes (100%)
- Graph Algorithms (95%)
- Temporal Queries (100%)
- Path Constraints (90%)
- HNSW Index (100%)
- Persistence (100%)
- Metadata Encryption (100%)
- GPU Acceleration (0% - geplant)
- Content Architecture (100%)
- Image Processor (100%)
- Geo Processor (100%)
- PDF/Office Processors (0% - geplant)
- Prometheus Metrics (100%)
- OpenTelemetry (100%)
- Statistics APIs (100%)
- Distributed Tracing (0% - geplant)
- Apache Arrow Integration (100%)
- COLLECT/GROUP BY (100%)
- Window Functions (100% - WindowEvaluator implementiert: 885 Zeilen Code, 579 Zeilen Tests)
- OLAP Optimizations (40%)
- TLS/SSL (100%)
- RBAC (100%)
- Encryption (100%)
- Field/Column Encryption (100% - Implemented as Field-Level + Schema-Based Encryption)
- Unified Multi-Model Architecture - True Multi-Model DB statt Polyglot Persistence
- ACID Transactions - Vollständige MVCC-Implementierung
- Production-Ready Security - 8/8 Security Features (3.700+ Zeilen Code)
- Comprehensive Testing - 303/303 Tests PASS (100%)
- Extensive Documentation - 279 Dateien, 50.000+ Zeilen
- High Performance - 45K writes/s, 120K reads/s, <1ms Queries
- Compliance-Ready - GDPR/SOC2/HIPAA
- Content Model - MVP implementiert, weitere Prozessoren geplant
- Analytics - Arrow Integration vorhanden, OLAP-Optimierungen geplant
- Distributed Scaling - Single-Node Only, Sharding Q2-Q3 2026
- JavaScript SDK - Alpha-Phase
- Column Encryption - Design-Phase
- Distributed Scaling - Kritisch für Enterprise-Adoption
- GPU Acceleration - Wichtig für Vector Search Performance
- Client SDK Maturity - Wichtig für Developer Experience
P0 - Kritisch:
- ✅ Dokumentation konsolidieren (COMPLETED)
- ✅ Column-Level Encryption (COMPLETED - implementiert als Field-Level Encryption)
⚠️ JavaScript/Python SDKs finalisieren (Alpha → Beta) ← NÄCHSTE PRIORITÄT
P1 - Hoch:
- Query Optimizer verbessern (Join Optimizations)
Entfernt:
- ❌ Content Processors erweitern - Nicht DB-Aufgabe (Ingestion ist externe Verantwortung)
- ✅ Window Functions - Bereits implementiert (WindowEvaluator: 885 Zeilen Code, 579 Zeilen Tests)
Post-v1.0.0:
- CI/CD Workflows (mit v1.0.0 Release)
- Runtime Image optimieren (Docker distroless)
P0 - Kritisch:
- Distributed Sharding & Replication (Horizontal Scaling)
- GPU-Beschleunigung (CUDA/Faiss GPU für Vector Search)
- Advanced OLAP Features (CUBE, ROLLUP)
P1 - Hoch:
- Go & Rust SDKs
- Multi-Datacenter Support
- Advanced Analytics (Graph Neural Networks)
- Geo-Operations GPU Acceleration
Vision:
- Fully Distributed Multi-Node Deployments
- Automated Partitioning & Load Balancing
- In-Database Machine Learning
- Real-Time Streaming Analytics
- Kubernetes Operator
- Cloud-Native Deployment (AWS, Azure, GCP)
⚠️ CPU-basierte Vector Search (HNSW)⚠️ CPU-basierte Geo-Operationen⚠️ Keine GPU-Beschleunigung
Priorität: P0
Zeitrahmen: Q2 2026
Implementierung:
- Faiss GPU Integration
- CUDA Kernels für Distance Computation
- GPU Memory Management (VRAM)
- Batch Processing Optimization
Erwarteter Speedup: 10-50x für Batch Queries
Abhängigkeiten:
- CUDA Toolkit 11.0+
- GPU mit Compute Capability 7.0+ (Volta/Turing/Ampere)
- Mindestens 8GB VRAM
Dokumentation (geplant):
docs/performance/gpu_acceleration.mddocs/performance/cuda_setup.md
Priorität: P2
Zeitrahmen: Q3 2026
Use Cases:
- Windows-native GPU acceleration
- Fallback wenn CUDA nicht verfügbar
Technologie:
- DirectX 12 Compute Shaders
- DirectML für ML Workloads
Priorität: P1
Zeitrahmen: Q2 2026
Implementierung:
- Spatial Index GPU Queries
- Parallel Distance Computations
- GPU-accelerated R-Tree
Erwarteter Speedup: 5-20x für komplexe Spatial Queries
- ✅ Recht auf Löschung (PII Manager)
- ✅ Recht auf Auskunft (Audit Logs)
- ✅ Pseudonymisierung (Field Encryption)
- ✅ Privacy by Design (RBAC, Encryption)
- ✅ Access Control (CC6.1) - RBAC
- ✅ Audit Logs (CC6.7) - Comprehensive Logging
- ✅ Change Management (CC7.2) - Version Control
- ✅ Access Control (§164.312(a)(1)) - RBAC
- ✅ Transmission Security (§164.312(e)(1)) - TLS/mTLS
- ✅ Audit Controls (§164.312(b)) - Audit Logging
Problem: Vector index cache kann bei Transaction rollback inkonsistent werden
Impact: LOW - Nur bei hoher Concurrency
Workaround: Cache invalidation bei Fehler
Fix geplant: Q1 2026
Problem: Blobs >10MB können Performance beeinträchtigen
Impact: MEDIUM
Workaround: BlobDB verwenden, S3 für sehr große Dateien
Status: Dokumentiert in docs/base_entity.md
Problem: Keine distributed transactions über Nodes hinweg
Impact: HIGH - Blockiert Multi-Node Scaling
Workaround: Single-Node Only
Fix geplant: Q2-Q3 2026 (Sharding & Replication)
- ✅
DEVELOPMENT_AUDITLOG.mderstellt - ✅ Vollständige Inventur aller Features
- ✅ Performance-Roadmap für GPU/CUDA
- ✅ 8/8 Critical Security Features
- ✅ 3.700+ Zeilen Code
- ✅ 3.400+ Zeilen Dokumentation
- ✅ Build/WSL Dokumentation
- ✅ Vault Integration verifiziert
- ✅ Docker Runtime hardening
- ✅ Graph edge property aggregation
- ✅ Time-range filtering
- ✅ Gorilla compression
- ✅ Continuous aggregates
- ✅ Retention policies
Maintainers:
- makr-code (Repository Owner)
Links:
- Repository: https://github.com/makr-code/ThemisDB
- Dokumentation: https://makr-code.github.io/ThemisDB/
- Wiki: https://github.com/makr-code/ThemisDB/wiki
- Issues: https://github.com/makr-code/ThemisDB/issues
MIT License - Siehe LICENSE Datei
Letzte Aktualisierung: 20. November 2025
Version: 1.0
Nächstes Review: Q1 2026
ThemisDB v1.3.4 | GitHub | Documentation | Discussions | License
Last synced: January 02, 2026 | Commit: 6add659
Version: 1.3.0 | Stand: Dezember 2025
- Übersicht
- Home
- Dokumentations-Index
- Quick Reference
- Sachstandsbericht 2025
- Features
- Roadmap
- Ecosystem Overview
- Strategische Übersicht
- Geo/Relational Storage
- RocksDB Storage
- MVCC Design
- Transaktionen
- Time-Series
- Memory Tuning
- Chain of Thought Storage
- Query Engine & AQL
- AQL Syntax
- Explain & Profile
- Rekursive Pfadabfragen
- Temporale Graphen
- Zeitbereichs-Abfragen
- Semantischer Cache
- Hybrid Queries (Phase 1.5)
- AQL Hybrid Queries
- Hybrid Queries README
- Hybrid Query Benchmarks
- Subquery Quick Reference
- Subquery Implementation
- Content Pipeline
- Architektur-Details
- Ingestion
- JSON Ingestion Spec
- Enterprise Ingestion Interface
- Geo-Processor Design
- Image-Processor Design
- Hybrid Search Design
- Fulltext API
- Hybrid Fusion API
- Stemming
- Performance Tuning
- Migration Guide
- Future Work
- Pagination Benchmarks
- Enterprise README
- Scalability Features
- HTTP Client Pool
- Build Guide
- Implementation Status
- Final Report
- Integration Analysis
- Enterprise Strategy
- Verschlüsselungsstrategie
- Verschlüsselungsdeployment
- Spaltenverschlüsselung
- Encryption Next Steps
- Multi-Party Encryption
- Key Rotation Strategy
- Security Encryption Gap Analysis
- Audit Logging
- Audit & Retention
- Compliance Audit
- Compliance
- Extended Compliance Features
- Governance-Strategie
- Compliance-Integration
- Governance Usage
- Security/Compliance Review
- Threat Model
- Security Hardening Guide
- Security Audit Checklist
- Security Audit Report
- Security Implementation
- Development README
- Code Quality Pipeline
- Developers Guide
- Cost Models
- Todo Liste
- Tool Todo
- Core Feature Todo
- Priorities
- Implementation Status
- Roadmap
- Future Work
- Next Steps Analysis
- AQL LET Implementation
- Development Audit
- Sprint Summary (2025-11-17)
- WAL Archiving
- Search Gap Analysis
- Source Documentation Plan
- Changefeed README
- Changefeed CMake Patch
- Changefeed OpenAPI
- Changefeed OpenAPI Auth
- Changefeed SSE Examples
- Changefeed Test Harness
- Changefeed Tests
- Dokumentations-Inventar
- Documentation Summary
- Documentation TODO
- Documentation Gap Analysis
- Documentation Consolidation
- Documentation Final Status
- Documentation Phase 3
- Documentation Cleanup Validation
- API
- Authentication
- Cache
- CDC
- Content
- Geo
- Governance
- Index
- LLM
- Query
- Security
- Server
- Storage
- Time Series
- Transaction
- Utils
Vollständige Dokumentation: https://makr-code.github.io/ThemisDB/