Skip to content

process_mining_guide

GitHub Actions edited this page Jan 2, 2026 · 1 revision

Process Mining Guide

Version: v1.3.0 Phase 2
Status: Production-Ready
Last Updated: December 22, 2025


Overview

ThemisDB's Process Mining module enables automated discovery and analysis of business processes from event log data. It provides a comprehensive suite of algorithms for process discovery, conformance checking, and performance enhancement.

Key Features

Process Discovery Algorithms

  • Alpha Miner: Classical algorithm for structured processes
  • Heuristic Miner: Robust algorithm handling noise and exceptions
  • Inductive Miner: Sound process models with guaranteed fitness

Analysis Capabilities

  • Directly-Follows Graph (DFG): Visualize process flows with frequencies
  • Variant Analysis: Identify common and rare process execution patterns
  • Bottleneck Detection: Find performance issues and delays
  • Social Network Mining: Analyze collaboration patterns between resources

Conformance Checking

  • Token replay for fitness calculation
  • Deviation detection and analysis
  • Model-reality alignment

Export Formats

  • BPMN 2.0 XML for standard process modeling
  • Petri Net (PNML) for formal analysis
  • JSON for programmatic access

Usage Examples

Basic Process Discovery

ProcessMining mining(db);

// Extract event log from collection
EventLogConfig config;
config.case_id_field = "order_id";
config.activity_field = "action";
config.timestamp_field = "timestamp";

auto event_log = mining.extractEventLog("audit_log", config);

// Discover process model
auto model = mining.discoverProcess(event_log, MiningAlgorithm::HEURISTIC);

// Export to BPMN
std::string bpmn = mining.exportToBPMN(model);

Variant Analysis

auto variants = mining.analyzeVariants(event_log);

// Find most common process variant
auto most_common = variants[0];
std::cout << "Most common variant occurs " << most_common.frequency << " times" << std::endl;

Bottleneck Detection

auto bottlenecks = mining.detectBottlenecks(event_log, 0.9); // 90th percentile

for (const auto& bottleneck : bottlenecks) {
    std::cout << "Bottleneck: " << bottleneck.activity 
              << " (avg: " << bottleneck.avg_duration_ms << "ms)" << std::endl;
}

Social Network Analysis

auto social_network = mining.extractSocialNetwork(event_log);
auto handovers = mining.analyzeHandovers(social_network);

// Analyze collaboration patterns
auto metrics = mining.calculateCollaborationMetrics(social_network);

See full documentation at https://github.com/makr-code/ThemisDB


Last Updated: December 22, 2025
Version: v1.3.0 Phase 2
Status: Production-Ready

ThemisDB Dokumentation

Version: 1.3.0 | Stand: Dezember 2025


📋 Schnellstart


🏗️ Architektur


🗄️ Basismodell


💾 Storage & MVCC


📇 Indexe & Statistiken


🔍 Query & AQL


💰 Caching


📦 Content Pipeline


🔎 Suche


⚡ Performance & Benchmarks


🏢 Enterprise Features


✅ Qualitätssicherung


🧮 Vektor & GNN


🌍 Geo Features


🛡️ Sicherheit & Governance

Authentication

Schlüsselverwaltung

Verschlüsselung

TLS & Certificates

PKI & Signatures

PII Detection

Vault & HSM

Audit & Compliance

Security Audits

Gap Analysis


🚀 Deployment & Betrieb

Docker

Observability

Change Data Capture

Operations


💻 Entwicklung

API Implementations

Changefeed

Security Development

Development Overviews


📄 Publikation & Ablage


🔧 Admin-Tools


🔌 APIs


📚 Client SDKs


📊 Implementierungs-Zusammenfassungen


📅 Planung & Reports


📖 Dokumentation


📝 Release Notes


📖 Styleguide & Glossar


🗺️ Roadmap & Changelog


💾 Source Code Documentation

Main Programs

Source Code Module


🗄️ Archive


🤝 Community & Support


Vollständige Dokumentation: https://makr-code.github.io/ThemisDB/

Clone this wiki locally