-
Notifications
You must be signed in to change notification settings - Fork 0
README_INGESTION
Version: 1.0
Date: December 25, 2025
Status: Complete ✅
This folder contains comprehensive documentation on optimizing data ingestion into ThemisDB. The documentation is organized into multiple levels for different audiences:
📄 INGESTION_OPTIMIZATION_SUMMARY.md
Target Audience: CTOs, Engineering Managers, Team Leads
Contents:
- Top 5 optimization ideas with quick impact analysis
- Performance comparison tables
- Recommended action plan (Phase 1-3)
- Configuration templates
- Key metrics to track
Key Takeaways:
- Quick wins: +150-250% throughput in 1-2 weeks
- Medium-term: +200-500% for specific workloads
- Practical configuration templates provided
Target Audience: Solutions Architects, Senior Engineers
Contents:
- Complete ingestion stack visualization
- Layer-by-layer optimization opportunities
- Data flow examples (before/after)
- Priority matrix (impact vs. effort)
- Implementation checklist
Key Takeaways:
- 4-layer architecture: Client → Network → Server → Storage
- Visual diagrams for each layer
- Real-world data flow examples
- Clear implementation roadmap
📄 INGESTION_OPTIMIZATION_IDEAS.md
Target Audience: Engineers, Database Administrators
Contents:
- 7 major optimization categories
- 40+ specific optimization techniques
- Code examples and configurations
- Performance benchmarks and impact analysis
- Trade-offs and risk assessment
Sections:
-
RocksDB Write Path Optimizations (40+ pages)
- Adaptive write buffer sizing
- Parallel memtable writes
- Level0 compaction tuning
- WAL optimization (async, group commit)
-
HTTP/gRPC Protocol Optimization (15 pages)
- Binary vs. JSON comparison
- HTTP/2 multiplexing
- Payload compression (Zstd, Gzip, LZ4)
-
Batch & Buffer Strategies (20 pages)
- Adaptive batch sizing
- Multi-level buffering
- Priority-based queues
-
Compression & Serialization (15 pages)
- Product Quantization for embeddings (-90-97% storage!)
- Time Series Gorilla compression
- JSON payload pre-compression
-
Memory-Mapped I/O & Zero-Copy (10 pages)
- Memory-mapped file import
- Zero-copy network transfers
- Direct I/O for bulk writes
-
Client-Side Optimizations (8 pages)
- Connection pooling
- Request pipelining
- Client-side batching
-
Summary & Prioritization (5 pages)
- Quick wins vs. long-term
- Configuration recommendations
- Action plan
Key Takeaways:
- Comprehensive technical details
- Production-ready code examples
- Real benchmark data
- Risk and trade-off analysis
- Read Executive Summary (5 min)
- Review recommended action plan
- Approve Phase 1 implementation (1-2 weeks)
- Read Executive Summary (5 min)
- Review Architecture Document (15 min)
- Plan implementation strategy
- Skim Executive Summary (5 min)
- Study Detailed Guide (60 min)
- Test optimizations in development
- Use configuration template
| Metric | Before | After | Improvement |
|---|---|---|---|
| Write Throughput | 100k ops/s | 250k ops/s | +150% |
| P99 Latency | 50ms | 15ms | -70% |
| Network Traffic | 100% | 30% | -70% |
| Storage (1M embeddings) | 3 GB | 3 GB | No change yet |
Effort: 10 days
Cost: Near zero (configuration changes)
Risk: Very low (well-tested optimizations)
| Metric | Before | After | Improvement |
|---|---|---|---|
| Write Throughput | 250k ops/s | 500k ops/s | +100% |
| P99 Latency | 15ms | 5ms | -67% |
| Storage (1M embeddings) | 3 GB | 0.3 GB | -90% |
| Bulk Import (10GB) | 30 min | 5 min | +500% |
Effort: 2 months
Cost: Medium (development time)
Risk: Low-Medium (requires testing)
| Metric | Before | After | Improvement |
|---|---|---|---|
| Write Throughput (@64 threads) | 500k ops/s | 1.5M ops/s | +200% |
| P99 Latency | 5ms | 2ms | -60% |
Effort: 6 months
Cost: High (significant development)
Risk: Medium (durability trade-offs)
- 📄 ingestion-optimized.yaml - Production-ready configuration
- Use as template for your environment
- Includes comments explaining each setting
All optimization techniques include working code examples:
- C++ (RocksDB optimizations)
- Python (client-side optimizations)
- Configuration (YAML)
# Write throughput test
./bench_write --config=ingestion-optimized.yaml
# Latency test
./bench_latency --percentiles=50,95,99
# Bulk import test
./bench_bulk_import --file=testdata.json --size=10GBSome optimizations reduce durability guarantees:
| Optimization | Durability Impact | Recommended For |
|---|---|---|
| Async WAL | Read replicas, dev | |
| Group Commit | High-throughput | |
| Disable WAL | ❌ Full data loss risk | Bulk import only |
General Rules:
-
Production Primary: Keep full durability (
sync=true,enable_wal=true) - Read Replicas: Can use async WAL for performance
- Bulk Import: Disable durability during import, re-enable after
- Development: Optimize for performance
| Configuration | Min RAM | Recommended RAM | Notes |
|---|---|---|---|
| Standard | 8 GB | 16 GB | Default settings |
| High-Throughput | 32 GB | 64 GB | 4× larger buffers |
| Bulk-Import | 64 GB | 128 GB | 8× larger buffers |
Formula:
Required RAM =
(write_buffer_size × max_write_buffer_number) +
block_cache_size +
2 GB (OS/Application)
| Configuration | Min Cores | Recommended | Notes |
|---|---|---|---|
| Standard | 4 | 8 | Basic workload |
| High-Throughput | 8 | 16 | Heavy compaction |
| Bulk-Import | 16 | 32+ | Parallel compression |
Note: More cores = more parallelism = higher throughput
Create a Grafana dashboard with these metrics:
-
Write Performance
- Write throughput (ops/sec)
- Write latency (P50, P95, P99)
- Batch size distribution
-
Resource Usage
- Memory (total, memtables, block cache)
- CPU (total, compaction, compression)
- Disk I/O (read/write MB/s)
-
RocksDB Health
- Level0 file count (should stay low)
- Write stalls (should be zero)
- Compaction pending bytes
-
Network
- Request rate
- Payload size (compressed vs uncompressed)
- Connection count
alerts:
- name: High Level0 Files
threshold: level0_files > 10
action: Increase compaction threads
- name: Write Stalls
threshold: write_stalls > 0
action: Critical - tune Level0 config
- name: High P99 Latency
threshold: p99_latency > 100ms
action: Investigate bottleneck
- name: Memory Pressure
threshold: memory_usage > 90%
action: Reduce buffer sizesSymptoms:
- P99 latency spikes to seconds
-
rocksdb.stall.microsmetric increases - Level0 file count keeps growing
Solutions:
- Increase
max_background_compactionsto 8-12 - Lower
level0_file_num_compaction_triggerto 2 - Lower
level0_stop_writes_triggerto 16 - Add more CPU cores for compaction
Symptoms:
- System memory usage at 100%
- OOM killer terminates process
- Swap usage increases
Solutions:
- Reduce
write_buffer_size(e.g., 1024MB → 512MB) - Reduce
max_write_buffer_number(e.g., 6 → 4) - Reduce
block_cache_size - Enable
db_write_buffer_sizelimit - Add more RAM
Symptoms:
- Write throughput < 50k ops/s
- CPU usage < 50%
- Disk I/O not saturated
Solutions:
- Enable HTTP/2
- Increase client batch size
- Use binary protocol instead of JSON
- Enable payload compression
- Increase parallelism (more client threads)
- BATCH_PROCESSING_OPPORTUNITIES.md - Detailed batch processing analysis
- PERFORMANCE_INDEX.md - Complete performance docs index
- THEMISDB_IMPACT_ANALYSE_OPTIMIERUNGEN.md - Full impact analysis
- RocksDB Tuning Guide
- RocksDB Performance Benchmarks
- HTTP/2 Best Practices
- Product Quantization Paper
- Gorilla Time Series Compression
- Zstandard Compression
- Ingestion Optimization Walkthrough
- Configuration Best Practices
- Benchmarking Guide
- Troubleshooting Common Issues
-
Start with Phase 1 (Quick Wins)
- Read Executive Summary
- Apply configuration template
- Run benchmarks to validate improvements
-
Plan Phase 2 (Medium-term)
- Review Detailed Guide
- Identify specific workloads to optimize
- Allocate development resources
-
Monitor and Iterate
- Set up Grafana dashboards
- Track key metrics
- Fine-tune based on real workload
-
Share Feedback
- Report performance improvements
- Suggest additional optimizations
- Contribute benchmarks and use cases
Found an optimization not covered here? Have benchmark results to share?
- Open an issue on GitHub
- Submit a pull request with your findings
- Share your success story
- Initial release
- 3 comprehensive documents
- 40+ optimization techniques
- Production-ready configuration template
- Complete architecture documentation
Questions? Contact the ThemisDB Performance Team
Status: Documentation Complete ✅
Ready for: Implementation Phase 1 🚀
Happy Optimizing! 💡⚡🚀
ThemisDB v1.3.4 | GitHub | Documentation | Discussions | License
Last synced: January 02, 2026 | Commit: 6add659
Version: 1.3.0 | Stand: Dezember 2025
- Übersicht
- Home
- Dokumentations-Index
- Quick Reference
- Sachstandsbericht 2025
- Features
- Roadmap
- Ecosystem Overview
- Strategische Übersicht
- Geo/Relational Storage
- RocksDB Storage
- MVCC Design
- Transaktionen
- Time-Series
- Memory Tuning
- Chain of Thought Storage
- Query Engine & AQL
- AQL Syntax
- Explain & Profile
- Rekursive Pfadabfragen
- Temporale Graphen
- Zeitbereichs-Abfragen
- Semantischer Cache
- Hybrid Queries (Phase 1.5)
- AQL Hybrid Queries
- Hybrid Queries README
- Hybrid Query Benchmarks
- Subquery Quick Reference
- Subquery Implementation
- Content Pipeline
- Architektur-Details
- Ingestion
- JSON Ingestion Spec
- Enterprise Ingestion Interface
- Geo-Processor Design
- Image-Processor Design
- Hybrid Search Design
- Fulltext API
- Hybrid Fusion API
- Stemming
- Performance Tuning
- Migration Guide
- Future Work
- Pagination Benchmarks
- Enterprise README
- Scalability Features
- HTTP Client Pool
- Build Guide
- Implementation Status
- Final Report
- Integration Analysis
- Enterprise Strategy
- Verschlüsselungsstrategie
- Verschlüsselungsdeployment
- Spaltenverschlüsselung
- Encryption Next Steps
- Multi-Party Encryption
- Key Rotation Strategy
- Security Encryption Gap Analysis
- Audit Logging
- Audit & Retention
- Compliance Audit
- Compliance
- Extended Compliance Features
- Governance-Strategie
- Compliance-Integration
- Governance Usage
- Security/Compliance Review
- Threat Model
- Security Hardening Guide
- Security Audit Checklist
- Security Audit Report
- Security Implementation
- Development README
- Code Quality Pipeline
- Developers Guide
- Cost Models
- Todo Liste
- Tool Todo
- Core Feature Todo
- Priorities
- Implementation Status
- Roadmap
- Future Work
- Next Steps Analysis
- AQL LET Implementation
- Development Audit
- Sprint Summary (2025-11-17)
- WAL Archiving
- Search Gap Analysis
- Source Documentation Plan
- Changefeed README
- Changefeed CMake Patch
- Changefeed OpenAPI
- Changefeed OpenAPI Auth
- Changefeed SSE Examples
- Changefeed Test Harness
- Changefeed Tests
- Dokumentations-Inventar
- Documentation Summary
- Documentation TODO
- Documentation Gap Analysis
- Documentation Consolidation
- Documentation Final Status
- Documentation Phase 3
- Documentation Cleanup Validation
- API
- Authentication
- Cache
- CDC
- Content
- Geo
- Governance
- Index
- LLM
- Query
- Security
- Server
- Storage
- Time Series
- Transaction
- Utils
Vollständige Dokumentation: https://makr-code.github.io/ThemisDB/