-
Notifications
You must be signed in to change notification settings - Fork 0
vector_quantization
GitHub Actions edited this page Jan 2, 2026
·
1 revision
Status: ✅ Implemented
Version: v1.3.0
Feature ID: #7
Vector Quantization provides memory compression for high-dimensional vectors using Product Quantization (PQ), reducing storage requirements by up to 97% while maintaining acceptable search accuracy.
- Product Quantization (PQ): Compress vectors using 8-bit codes
- Memory Compression: Reduce 1536D float32 vectors from 6KB to 192 bytes
- K-means Training: Automatic codebook generation from training data
- Asymmetric Distance: Fast distance computation directly from quantized codes
- Configurable Subquantizers: Adjust compression ratio vs. accuracy trade-off
#include "index/vector_index.h"
VectorIndexManager vim(db);
vim.init("documents", 1536);
// Enable quantization
vim.enableQuantization(true, 8);
// Train quantizer
vim.trainQuantizer();
// Vectors are now automatically quantized
vim.addEntity(entity, "embedding");
// Search works with quantized codes
auto [status, results] = vim.searchKnn(query, 10);- Memory Reduction: 32x compression (6KB → 192 bytes for 1536D)
- Speed Improvement: 2-4x faster search
- Accuracy: 95-98% recall@10
See full documentation at docs/features/vector_quantization.md
- Paper: "Product Quantization for Nearest Neighbor Search" (PAMI 2011)
- Implementation:
include/index/product_quantizer.h,src/index/product_quantizer.cpp - Tests:
tests/test_product_quantizer.cpp
ThemisDB v1.3.4 | GitHub | Documentation | Discussions | License
Last synced: January 02, 2026 | Commit: 6add659
Version: 1.3.0 | Stand: Dezember 2025
- Übersicht
- Home
- Dokumentations-Index
- Quick Reference
- Sachstandsbericht 2025
- Features
- Roadmap
- Ecosystem Overview
- Strategische Übersicht
- Geo/Relational Storage
- RocksDB Storage
- MVCC Design
- Transaktionen
- Time-Series
- Memory Tuning
- Chain of Thought Storage
- Query Engine & AQL
- AQL Syntax
- Explain & Profile
- Rekursive Pfadabfragen
- Temporale Graphen
- Zeitbereichs-Abfragen
- Semantischer Cache
- Hybrid Queries (Phase 1.5)
- AQL Hybrid Queries
- Hybrid Queries README
- Hybrid Query Benchmarks
- Subquery Quick Reference
- Subquery Implementation
- Content Pipeline
- Architektur-Details
- Ingestion
- JSON Ingestion Spec
- Enterprise Ingestion Interface
- Geo-Processor Design
- Image-Processor Design
- Hybrid Search Design
- Fulltext API
- Hybrid Fusion API
- Stemming
- Performance Tuning
- Migration Guide
- Future Work
- Pagination Benchmarks
- Enterprise README
- Scalability Features
- HTTP Client Pool
- Build Guide
- Implementation Status
- Final Report
- Integration Analysis
- Enterprise Strategy
- Verschlüsselungsstrategie
- Verschlüsselungsdeployment
- Spaltenverschlüsselung
- Encryption Next Steps
- Multi-Party Encryption
- Key Rotation Strategy
- Security Encryption Gap Analysis
- Audit Logging
- Audit & Retention
- Compliance Audit
- Compliance
- Extended Compliance Features
- Governance-Strategie
- Compliance-Integration
- Governance Usage
- Security/Compliance Review
- Threat Model
- Security Hardening Guide
- Security Audit Checklist
- Security Audit Report
- Security Implementation
- Development README
- Code Quality Pipeline
- Developers Guide
- Cost Models
- Todo Liste
- Tool Todo
- Core Feature Todo
- Priorities
- Implementation Status
- Roadmap
- Future Work
- Next Steps Analysis
- AQL LET Implementation
- Development Audit
- Sprint Summary (2025-11-17)
- WAL Archiving
- Search Gap Analysis
- Source Documentation Plan
- Changefeed README
- Changefeed CMake Patch
- Changefeed OpenAPI
- Changefeed OpenAPI Auth
- Changefeed SSE Examples
- Changefeed Test Harness
- Changefeed Tests
- Dokumentations-Inventar
- Documentation Summary
- Documentation TODO
- Documentation Gap Analysis
- Documentation Consolidation
- Documentation Final Status
- Documentation Phase 3
- Documentation Cleanup Validation
- API
- Authentication
- Cache
- CDC
- Content
- Geo
- Governance
- Index
- LLM
- Query
- Security
- Server
- Storage
- Time Series
- Transaction
- Utils
Vollständige Dokumentation: https://makr-code.github.io/ThemisDB/