-
Notifications
You must be signed in to change notification settings - Fork 0
README_PROCESS_MINING
Version: 1.0
Date: 2025-12-24
Status: Research & Design Phase Complete ✅
This documentation suite covers the complete design and implementation plan for integrating Process Mining capabilities into ThemisDB's Advanced Query Language (AQL).
"Ich möchte das Process-mining auch in AQL möglich machen. eine Idee ist eine Ideal Prozessstruktur zu übergeben und die process-miner suchen nach graphen, vectoren, relationalen Zusammenhängen und zeigen entsprechende gefundene 'ähnliche' Prozesse an."
Translation: Enable process mining in AQL by passing an ideal process structure and having process miners search for similar processes using graph, vector, and relational patterns.
"Modelle für Verwaltung bevorzugt"
Translation: Prefer models for public administration/governance.
1. PROCESS_MINING_SUMMARY.md ⭐ START HERE
Executive Summary - High-level overview of the entire project
Contents:
- Project objectives and achievements
- Deliverables summary (documentation, code, config)
- Architecture overview
- Quick reference to all other documents
- Next steps
Audience: Project managers, stakeholders, new team members
Comprehensive Research - 50+ pages of scientific foundation and implementation plan
Contents:
- Section 1: Scientific foundations (11 publications)
- Section 2: Existing ThemisDB features
- Section 3: Requirements analysis
- Section 4: Solution architecture
- Section 5: Implementation roadmap (6 phases)
- Section 6: Example use cases
- Section 7: Scientific publications reference
- Section 8: Success criteria
- Section 9: Risk analysis
Key Topics:
- Alpha Miner, Heuristic Miner, Inductive Miner algorithms
- Graph Edit Distance, Jaccard Similarity, LCS, Cosine Similarity
- Administrative process best practices
- Compliance frameworks (GWB, BauO, DSGVO, AGG)
Audience: Developers, researchers, architects
Practical Examples - 10 complete real-world scenarios with AQL queries
Contents:
- Example 1: Finding similar building permit processes
- Example 2: Conformance checking against ideal process
- Example 3: Pattern-based filtering
- Example 4: Procurement process discovery
- Example 5: Process variant analysis (HR)
- Example 6: Bottleneck detection (Budget planning)
- Example 7: Predictive analytics (End time prediction)
- Example 8: List available administrative models
- Example 9: Export discovered process as BPMN
- Example 10: Complex analysis - Cross-department comparison
Also Includes:
- Tips & best practices
- Troubleshooting guide
- Performance optimization tips
Audience: Database users, analysts, administrators
Feature Guide - Overview of process mining capabilities (existing document)
Contents:
- Process discovery algorithms
- Analysis capabilities (DFG, variants, bottlenecks)
- Conformance checking
- Export formats (BPMN, Petri Net)
- Usage examples
Audience: End users, tutorial readers
Core Pattern Matching Class
class ProcessPatternMatcher {
// Find processes similar to a pattern
std::pair<Status, std::vector<SimilarityResult>> findSimilar(
const ProcessPattern& pattern,
const PatternMatchConfig& config
);
// Compare process with ideal model
std::pair<Status, ConformanceResult> compareWithIdeal(
const std::string& case_id,
const ProcessPattern& ideal_pattern
);
// Check if process matches pattern
std::pair<Status, bool> hasPattern(
const std::string& case_id,
const ProcessPattern& pattern,
double threshold
);
// Load administrative models
std::pair<Status, std::map<std::string, ProcessPattern>>
loadAdministrativeModels();
};Features:
- 4 similarity methods: GRAPH, VECTOR, BEHAVIORAL, HYBRID
- Pattern caching for performance
- Integration with VectorIndex and GraphIndex
- Batch operations support
AQL Function Definitions
15 New AQL Functions:
Pattern Matching (NEW):
-
PM_FIND_SIMILAR(pattern, config)→ Array -
PM_COMPARE_IDEAL(case_id, ideal)→ Object -
PM_HAS_PATTERN(case_id, pattern, threshold)→ Boolean
Event Log:
-
PM_EXTRACT_LOG(collection, config)→ Object -
PM_EXTRACT_TRACE(case_id)→ Object
Discovery:
-
PM_DISCOVER_PROCESS(log, config)→ Object -
PM_VARIANTS(log, top_n)→ Array
Administrative Models (NEW):
-
PM_LOAD_ADMIN_MODEL(model_id)→ Object -
PM_LIST_ADMIN_MODELS()→ Array
Conformance:
-
PM_CONFORMANCE(case_id, model)→ Object -
PM_DEVIATIONS(case_id, model)→ Array
Performance:
-
PM_BOTTLENECKS(log, threshold)→ Array -
PM_PREDICT_END(case_id)→ Object
Export:
-
PM_EXPORT_BPMN(model)→ String
Predefined Administrative Process Models
5 Models Included:
-
bauantrag_standard - Building Permit Process
- §34 BauO compliant
- 3-month SLA
- Vier-Augen-Prinzip
-
beschaffung_vergaberecht - Procurement Process
- GWB and VOB/A compliant
- EU threshold rules (€214,000)
- Documentation requirements
-
personal_einstellung - HR Recruitment
- AGG compliant (anti-discrimination)
- DSGVO compliant (data protection)
- Betriebsrat integration
-
haushaltsplanung_jaehrlich - Budget Planning
- Annual cycle
- Fixed milestones (30.09., 15.10., 30.11.)
- Multi-level approval
-
dokumenten_freigabe - Document Approval
- Multi-stage workflow
- Version control
- Vier-Augen-Prinzip
-- 1. List available administrative models
LET models = PM_LIST_ADMIN_MODELS()
RETURN models
-- 2. Load a specific model
LET ideal = PM_LOAD_ADMIN_MODEL("bauantrag_standard")
RETURN ideal
-- 3. Find similar processes
LET similar = PM_FIND_SIMILAR(ideal, {
method: "hybrid",
threshold: 0.75,
limit: 10
})
RETURN similar
See: PROCESS_MINING_AQL_EXAMPLES.md for 10 complete examples.
-
Read Research Document
- PROCESS_MINING_RESEARCH_AND_ROADMAP.md
- Understand algorithms and metrics
-
Review API Design
-
Follow Implementation Roadmap
- Phase 2: Core Implementation
- Phase 3: AQL Integration
- Phase 4: Administrative Models
- Phase 5: Testing
- Phase 6: Optimization
-
Run Tests
- Unit tests (target: 85%+ coverage)
- Integration tests
- Performance benchmarks
Duration: Week 1-2
Status: 100% Complete
Deliverables:
- 50+ pages research document
- 11 scientific publications referenced
- API design complete
- 15 AQL functions specified
- 5 administrative models defined
- 10 usage examples created
- Architecture diagrams
Duration: Week 3-4
Status: Not Started
Tasks:
- Implement ProcessPatternMatcher class
- Graph similarity algorithms
- Vector similarity with embeddings
- Behavioral similarity metrics
- Unit tests
Status: Planned
See: PROCESS_MINING_RESEARCH_AND_ROADMAP.md Section 5 for full roadmap.
-
van der Aalst, W.M.P. (2016)
Process Mining: Data Science in Action -
Dijkman et al. (2011)
Similarity of Business Process Models: Metrics and Evaluation -
Weidlich et al. (2011)
Behavioural Profiles for Business Process Models -
Evermann et al. (2017)
Predicting Process Behaviour Using Deep Learning
Complete List: See PROCESS_MINING_RESEARCH_AND_ROADMAP.md Section 7.
Building & Construction:
- §34 BauO (Building regulations)
- Dokumentationspflicht
Procurement:
- GWB §119 (Public procurement)
- VOB/A (Construction contracts)
HR & Privacy:
- AGG (Anti-discrimination)
- DSGVO/GDPR (Data protection)
General Administration:
- Vier-Augen-Prinzip (Four-eyes principle)
- Haushaltsrecht (Budget law)
- Building permit conformance checking
- Procurement process compliance (GWB)
- HR recruitment (AGG/DSGVO compliant)
- Budget planning optimization
- Document approval workflows
- Production process optimization
- Quality assurance workflows
- Supply chain process mining
- Patient pathway analysis
- Treatment process discovery
- Clinical compliance checking
- 100k processes: Similarity search < 1 second
- 1M processes: Incremental indexing < 5 seconds
- Cache hit rate: > 80% for frequent patterns
- HNSW indexing for vector search
- Pattern caching
- Parallel processing (OpenMP)
- GPU acceleration (optional, CUDA)
- VectorIndex: HNSW, GNN embeddings
- GraphIndex: Graph analytics
- ProcessMining: Alpha/Heuristic/Inductive miners
- ProcessPatternMatcher: Pattern matching engine
- AdministrativeModelLoader: YAML model loader
- SimilarityComputer: Graph/Vector/Behavioral metrics
- See PROCESS_MINING_AQL_EXAMPLES.md Troubleshooting section
- Review PROCESS_MINING_RESEARCH_AND_ROADMAP.md for technical details
- Review API design in header files
- Follow coding standards from existing codebase
- Write unit tests (target: 85%+ coverage)
- Update documentation as needed
- ✅ Complete research & design phase
- ✅ 4 documentation files created (100+ pages)
- ✅ 2 API header files designed
- ✅ 1 configuration file with 5 models
- ✅ 15 AQL functions specified
- ✅ 11 scientific publications referenced
- ✅ 10 usage examples provided
Project: ThemisDB Process Mining AQL Integration
Phase: Research & Design Complete
Version: 1.0
Date: 2025-12-24
Team: ThemisDB Development Team
Repository: makr-code/ThemisDB
This project delivers a comprehensive design for integrating process mining into AQL with:
- ✅ Scientific foundation (11 publications)
- ✅ Practical examples (10 scenarios)
- ✅ Administrative focus (5 governance models)
- ✅ Multi-model similarity (graph + vector + behavioral)
- ✅ Production-ready architecture
- ✅ Clear implementation roadmap
Status: Ready for implementation phase 🚀
Last Updated: 2025-12-24
Next Review: Start of Implementation Phase 2
ThemisDB v1.3.4 | GitHub | Documentation | Discussions | License
Last synced: January 02, 2026 | Commit: 6add659
Version: 1.3.0 | Stand: Dezember 2025
- Übersicht
- Home
- Dokumentations-Index
- Quick Reference
- Sachstandsbericht 2025
- Features
- Roadmap
- Ecosystem Overview
- Strategische Übersicht
- Geo/Relational Storage
- RocksDB Storage
- MVCC Design
- Transaktionen
- Time-Series
- Memory Tuning
- Chain of Thought Storage
- Query Engine & AQL
- AQL Syntax
- Explain & Profile
- Rekursive Pfadabfragen
- Temporale Graphen
- Zeitbereichs-Abfragen
- Semantischer Cache
- Hybrid Queries (Phase 1.5)
- AQL Hybrid Queries
- Hybrid Queries README
- Hybrid Query Benchmarks
- Subquery Quick Reference
- Subquery Implementation
- Content Pipeline
- Architektur-Details
- Ingestion
- JSON Ingestion Spec
- Enterprise Ingestion Interface
- Geo-Processor Design
- Image-Processor Design
- Hybrid Search Design
- Fulltext API
- Hybrid Fusion API
- Stemming
- Performance Tuning
- Migration Guide
- Future Work
- Pagination Benchmarks
- Enterprise README
- Scalability Features
- HTTP Client Pool
- Build Guide
- Implementation Status
- Final Report
- Integration Analysis
- Enterprise Strategy
- Verschlüsselungsstrategie
- Verschlüsselungsdeployment
- Spaltenverschlüsselung
- Encryption Next Steps
- Multi-Party Encryption
- Key Rotation Strategy
- Security Encryption Gap Analysis
- Audit Logging
- Audit & Retention
- Compliance Audit
- Compliance
- Extended Compliance Features
- Governance-Strategie
- Compliance-Integration
- Governance Usage
- Security/Compliance Review
- Threat Model
- Security Hardening Guide
- Security Audit Checklist
- Security Audit Report
- Security Implementation
- Development README
- Code Quality Pipeline
- Developers Guide
- Cost Models
- Todo Liste
- Tool Todo
- Core Feature Todo
- Priorities
- Implementation Status
- Roadmap
- Future Work
- Next Steps Analysis
- AQL LET Implementation
- Development Audit
- Sprint Summary (2025-11-17)
- WAL Archiving
- Search Gap Analysis
- Source Documentation Plan
- Changefeed README
- Changefeed CMake Patch
- Changefeed OpenAPI
- Changefeed OpenAPI Auth
- Changefeed SSE Examples
- Changefeed Test Harness
- Changefeed Tests
- Dokumentations-Inventar
- Documentation Summary
- Documentation TODO
- Documentation Gap Analysis
- Documentation Consolidation
- Documentation Final Status
- Documentation Phase 3
- Documentation Cleanup Validation
- API
- Authentication
- Cache
- CDC
- Content
- Geo
- Governance
- Index
- LLM
- Query
- Security
- Server
- Storage
- Time Series
- Transaction
- Utils
Vollständige Dokumentation: https://makr-code.github.io/ThemisDB/